RP2040 A microcontroller by Raspberry Pi

RP2040 Datasheet
A microcontroller
by Raspberry Pi

Raspberry Pi Trading Ltd

RP2040 Datasheet

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.
Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 ARM Limited.

All rights reserved. Used with permission.

build-date: 2021-06-23
build-version: ced2189-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is
Copyright © 2020 Raspberry Pi (Trading) Ltd. and licensed under the 3-Clause BSD license.

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY Pl PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME ("RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL's Standard Terms. RPTL’s provision of the RESOURCES does not

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.org/terms-conditions-sale/

RP2040 Datasheet
]

expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal Disclaimer Notice 2

https://www.raspberrypi.org/terms-conditions-sale/

RP2040 Datasheet

Table of Contents

Colophon - oo 1
Legal Disclaimer Notice. 1
ToIntroducCtion. « .. 9
1.1. Why is the chip called RP20407. 9
T.2.SUMMANY .« oo 10
1.3, The Chip . ..o 10
T4, Pinout Reference. oo 11
T4 PinLocationso 11
T.4.2. Pin Descriptions 12
T.4.3.GPIO FUNCLIONS 13
2.System DesCription oo 15
2.0 Bus Fabric .. 15
217 AHB-Lite Crossbar 16
2.1.2. Atomic Register ACCESSo 18
213 APB Bridge . . . 18
2.1.4. Narrow 10 Register Writes. i 18
2.1.5. Listof Registers 19
2.2, Address Map 24
2271 SUMMANY. oo 24
2.2.2.Detail .o 25
2.3. Processor subsystem 27
230, SI0 27
2.3.2.INTeITUPTS. « . i 60
2.3.3.BEvent Signals 61
2.3.4.DEbUQG - . 61
2.4.Cortex-MO+ .. 62
2470 Featureso 62
2.4.2. Functional Description 64
2.4.3. Programmer's model. 68
2.4.4.System CONTIOl.o 73
245 NVIC. | 74
2.4.6. MPU . 76
24.7.DEbUQ . 76
2.4.8. Listof Registers. 77
2.5, DM A 91
2.5.1. Configuring Channels 92
2.5.2. Starting Channels. 94
2.5.3. Data Request (DREQ). 95
2.5 4 INTeITUPTES. © . oo 97
2.5.5. Additional Features 97
2.5.6. Example Use Cases. 98
2.5.7. Listof Registers. 102
2.6. MEIMOTY . .o 147
2.6.T. ROM. 147
2.6.2. SRAM 148
2.6.3. Flash .. 149
2.7.B00tSEqQUENCE i 156
2.8. BOOMrOM oo 156
2.8.1. Processor Controlled Boot Sequence 157
2.8.2. Bootrom Contents 159
2.8.3.USB Mass Storage Interface 170
2.8.4.USB PICOBOOT Interface 172
2.9. Power SUPPlies . . . 178
2.9.1. Digital 10 Supply (IOVDD) 178
2.9.2. Digital Core Supply (DVDD). 179

Table of Contents 3

RP2040 Datasheet

Table of Contents

2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN) 179
2.9.4.USB PHY Supply (USB_VDD) 179
2.9.5. ADC Supply (ADC_AVDD) 179
2.9.6. Power Supply SEQUENCING 180
2.9.7. Power Supply Schemes 180
2.10. Core Supply Regulator 182
2.10.7. Application Circuit 183
2.10.2. Operating Modes 183
2.10.3. Output Voltage Select 184
2.10.4.Status 184
2.10.5. Current Limit - . oo 184
2.10.6. List of Registers. 184
2.10.7. Detailed Specifications 187
2171, Power CoNtrol . . . 187
2110, Top-level Clock Gates 187
21712 SLEEP State 188
2.11.3. DORMANT State 188
2.17.4. Memory Power DOWN ... 188
2.11.5. Programmer's Model 189
2.12.Chip-Level Reset 190
20270 0VEIVIEW . .. 190
2.12.2. Power-on Reseto 191
2.12.3. Brown-out Detection 192
2.12.4.8Supply MONItOr. . ..o 194
2.12.5. External Reset 194
2.12.6. Rescue Debug Port Reset. 194
2.12.7.Source of Last Reset. 194
2.12.8. Listof Registers. 195
2.13. Power-On State Machine 195
20300 0VEIVIEW . - - oo 195
2.13.2. Power ON SeqUENCE o 195
2.13.3. Register Control. 196
2.13.4. Interaction with Watchdog 196
2.13.5. Listof Registers. 196
2.14.Subsystem ReSets 199
20470, 0VEIVIEW . ..o 199
2.14.2. Programmer's Model 200
2.14.3. Listof Registers. 201
215, CloCKS o 204
2057 0OVEIVIEW . - - o 204
2.15.2. ClOCK SOUMCES 205
2.15.3. Clock Generators. 208
2.15.4. Frequency COUNTEr 211
2055 RESUS oo 212
2.15.6. Programmer’'s Model 212
2.15.7. Listof Registers. 218
2.16. Crystal Oscillator (XOSC). 240
2061 OVEIVIEW . - o 240
2.716.2.USaQeo 240
2.16.3.Startup Delay 240
2.16.4. XOSC CoUNter 241
216.5.DORMANT MOdE 241
2.16.6. Programmer's Model 241
2.16.7. Listof Registers. 242
2.17.Ring Oscillator (ROSC) 244
2070 0VEIVIEW . ..o 244
2.17.2. ROSC/XOSC trade-offs 245
2.17.3. Modifying the frequency. 245
2174 ROSC Aivider 246
2.17.5. Random Number Generator. 246

RP2040 Datasheet

2.17.6. ROSC COoUNter - .. .o 246
217.7.DORMANT mMOde 246
2.17.8. Listof Registers. 247
218, PLL . 251
2081 OVEIVIEW . . o 251
2.18.2. Calculating PLL parameters. 251
2.18.3. Configuration 254
2.18.4. Listof Registers. 255
219, GPIO . i 257
2791 OVeIVIEW . - - oo 257
2.19.2. Function Select 258
21930 Interrupts .« .o 260
2.79.4.Pads - .. 261
2.19.5. Software Examples 262
2.19.6. List of Registers. 264
2.20. Sysinfo . 324
2.20.T. OVEIVIEW . - . o 324
2.20.2. Listof Registers. 325
2,20, SyYSCig 325
2210 0VeIVIEW . - - oo 325
2.21.2. Listof Registers. 326
2.22. TBMAN . | oo 329
2.22.7. Listof Registers. 329

3 Pl 330
31 OVeIVIEW 330
3.2. Programmer's Model 331
321 PIO Programs. . ..o 331
3.2.2.Control FIOWo 332
3.2.3. Registers . . 333
3.24.8talling ... 336
3.2.5. PINMapping 337
3.2.6. IRQFIags. . .. oo 337
3.2.7. Interactions Between State Machines 337
3.3. PIO Assembler (Pioasm) 338
3.3 1. DIreCtiVES - . 338
3.3.2.Values . 339
3.3.3UEXPreSSIONS .« .. 339
3.3.4. CoMMENTS .. 339
3.3.5. Labels . 339
3.3.6. InStructions. 340
3.3.7. Pseudoinstructions 340
3.4 Instruction Set. . . . 340
A SUMMAY. - - 340
34 2. M 341

B A 3 WAL 342
A A IN 343
345, OUT Lo 344
3.4.6. PUSH . 345
347 PULL 346
348 MOV 347
349 IRQ . . 348
3400, SET oo 349
3.5.Functional Details 350
35T Side-set . . i 350
3.5.2. Program Wrapping 351
353 FIFOJOININGo 353
3.5.4. Autopush and Autopull 354
3.5.5. Clock Dividers 358
3.5.6. GPIO Mapping 359
3.5.7. Forced and EXEC'd Instructions. 361

Table of Contents

RP2040 Datasheet

3.6, EXamples . . 363
3.6.7. DUplex SPI 363
3.6.2. WS28T2 LEDS. 367
3.6.3. UART TX oo 369
3.6.4. UART RX . . 371
3.6.5. Manchester Serial TX and RX. 374
3.6.6. Differential Manchester (BMC) TX and RX 376
3.6.7. 120 379
3.6.8. PWIM 383
3.6.9. Addition. ... 385
3.6.10. Further Examples. 387

3.7.Listof Registers 387

4. Peripherals . . . 402

AT USB . 402
AT 0VEIVIEW . . o 402
4.1.2. Architecture 403
4.1.3. Programmer’'s Model. 412
474, Listof Registers. 416
RefErenNCes 435

A2 UART 435
A.2.1. 0VEIVIEW . . . o 436
4.2.2. Functional description. 436
4.2.3.0peration ... 438
4.2.4. UART hardware flow control 441
4.2.5.UART DMA Interface 442
4.2.6.INterruptsl 443
4.2.7. Programmer’'s Model. 445
4.2.8. Listof Registers. 447

R 1 459
A3 Features ... 460
4.3.2. 1P Configuration. 460
4.3.3.12C OVEIVIEW. - . i 461
A4.3.4.12CTerminology. 463
4.3.5.12C Behaviour. 463
4.3.6.12C Protocols 465
4.3.7. Tx FIFO Management and START, STOP and RESTART Generation. 468
4.3.8. Multiple Master Arbitration. 470
4.3.9. Clock Synchronization. 471
4.3.10. Operation Modes 472
4.3.17. Spike SUPPresSION. 477
4.3.12. Fast Mode Plus Operation 478
4.3.13.Bus Clear Feature 478
4.3.14. 1C_CLK Frequency Configuration. 479
4.3.15. DMA Controller Interface 483
4.3.16. Operation of Interrupt Registers 484
4.3.17. Listof Registers. 484

A4, SPl 522
A AT, 0VEIVIEW . . . 523
4.4.2. Functional Description 523
4.4.3.0peration 525
444 Listof Registers. 536

A PWIM . 543
A5, 0VEIVIEW . . 543
4.5.2. Programmer's Model. 543
4.5.3. Listof Registers. 550

A6, TIMIEr i 555
A.6.1.OVEIVIEW . . 555
4.6.2. COUNTEN . . . 556
4.6.3. AlarmS. 556
4.6.4. Programmer's Model. 557

Table of Contents

RP2040 Datasheet
]

4.6.5. Listof Registers. 560
A7 . Watchdog. - . .. 565
AT7.0.0VEIVIEW . . o 565
4.7.2. Tick generation 565
4.7.3. Watchdog Counter. 565
4.7.4.Scratch Registers. 566
4.7.5. Programmer’'s Model. 566
4.7.6. Listof Registers. 567

A 8. RTC . o 569
4.8.1.Storage Format 569
4.8.2.L€aP YEAI 570
4.8.3. INterrupts . ..o 570
4.8.4. Reference CloCK 570
4.8.5. Programmer's Model. 571
4.8.6. Listof Registers. 574
4.9. ADC and Temperature SENSOr. 578
4.9.1. ADC controller 579
4.9.2. SAR ADC . . 580
4.9.3. ADCENOB 582
4.9.4 INLand DNL 583
4.9.5. Temperature SENSOT 584
4.9.6. Listof Registers. 585
A0, SOl 588
AT0.T.OVEIVIEW . ..o 588
A4.710.2. Features . . . 589
4.10.3. IP Modifications. 590
4.10.4. Clock Ratios 591
4.10.5. Transmit and Receive FIFO Buffers. 592
4.10.6. 32-Bit Frame Size Support 593
4.10.7. SSHINTerTUPES . . . oo 593
4.10.8. Transfer Modes 594
4.10.9. Operation Modes 595
4.10.10. Partner Connection Interfaces. 600
4.10.11. DMA Controller Interface 616
41072 APBINterface. 618
4.10.13. List of Registers. 619

5. Electrical and Mechanical. 628
Sl Package . . . 628
5.1.1. Recommended PCB Footprint 628
5.1.2.Compliance 629

5. 2. PINOUL . . 629
5.2 PinLocationso 629
5.2.2. Pin Definitions 630
5.2.3. Pin Specifications 633
5.3, Power SUPPlies 636
5.4. Power Consumplion. 637
5.4.1. Power Consumption versus frequency 638
Appendix A: Register Field Types. 639
Standard types 639
R 639

RO . 639
WO 639
Clear types - . 639
SO 639
W 639
FIFO Ay pes - 639
RE 639
W 639
RWE 640
Appendix B: Errata 641

]
Table of Contents 7

RP2040 Datasheet

Bootrom. . .o 641
RP2040-EO. . . oo 641
CloCks . i 641
RP2040-E7. . i 641
RP2040-ET10 .. i 642
GPIO / ADC . oo 642
RP2040-E6. . . . i 642
RP2040-ETT oo 642
US B oo 642
RP2040-E2. . . i 643
RP2040-E3. . . i 643
RP2040-E4. . . oo 643
RP2040-E5. . i 644
Watchdog - ... 644
RP2040-ET. . i 644
XIP Flash . oo 645
RP2040-E8. . . . i 645
Appendix C: Documentation Release History 646

Table of Contents 8

RP2040 Datasheet

Chapter 1. Introduction

Microcontrollers connect the world of software to the world of hardware. They allow developers to write software which
interacts with the physical world in the same deterministic, cycle-accurate manner as digital logic. They occupy the
bottom left corner of the price/performance space, outselling their more powerful brethren by a factor of ten to one.
They are the workhorses that power the digital transformation of our world.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of high performance, low cost,
and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic bus fabric, and rich peripheral set
augmented with our unique Programmable 1/0 (PIO) subsystem, it provides professional users with unrivalled power
and flexibility. With detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it has the
lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external QSPI memory. This design
decision allows you to choose the appropriate density of non-volatile storage for your application, and to benefit from
the low pricing of commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high performance, low dynamic power
consumption, and low leakage, with a variety of low-power modes to support extended-duration operation on battery
power.

Key features:

® Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

® 30 GPIO pins, 4 of which can be used as analogue inputs

Peripherals
o 2UARTs
o 2 SPI controllers
o 212C controllers
o 16 PWM channels
o USB 1.1 controller and PHY, with host and device support
o 8 PIO state machines

Whatever your microcontroller application, from machine learning to motor control, from agriculture to audio, RP2040
has the performance, feature set, and support to make your product fly.

1.1. Why is the chip called RP2040?

The post-fix numeral on RP2040 comes from the following,

1.1. Why is the chip called RP2040? 9

RP2040 Datasheet
]

1. Number of processor cores (2)

2. Loosely which type of processor (M0+)

3. floor(log2(ram / 16k))

4. floor(log2(nonvolatile / 16k)) or 0 if no onboard nonvolatile storage

see Figure 1.

Figure 1. An
explanation for the

name of the RP2040 D
chip.
—
A

A

T

floor(log2(nonvolatile / 16k))

40
|

floor(log2(ram / 16k))

— 1O

Type of core (e.g. MO+)

Number of cores

Raspberry Pi

1.2. Summary

RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features:
® Dual Cortex MO+ processor cores, up to 133 MHz
® 264 kB of embedded SRAM in 6 banks
® 30 multifunction GPIO
® 6 dedicated 10 for SPI Flash (supporting XIP)
® Dedicated hardware for commonly used peripherals
® Programmable |0 for extended peripheral support
® 4 channel ADC with internal temperature sensor, 0.5 MSa/s, 12-bit conversion

® USB 1.1 Host/Device

1.3. The Chip

RP2040 has a dual MO+ processor cores, DMA, internal memory and peripheral blocks connected via AHB/APB bus
fabric.

|
1.2. Summary 10

RP2040 Datasheet

Figure 2. A system
overview of the
RP2040 chip

10s Clock RP2040
) Internal
generation)
oscillator
P > Crvetal PLL Interrupts
rysta
< > Y PLL
ProcO Proc1
<o e I
SIO DMA
' [
Peripherals
I SPI x2 | | Reset control |
— Bus Fabric
PWM Power on state
UART x2 machine
GPIO -
L N—{
< > [200] —1 I Timer | | Sysctrl | I I ! | ! !
| RIC | | sysinfo | Y
I 120 x2 | | Watchdog | PIO0|PIO1 Cache ROM| [SRAM SRAM| | |USB —>
ADC & TS [PIg SRAM (| HSRAM
I SRAMHYHSRAM
I —
Memory
< » QSPI
Core Supply Regulator =3

Code may be executed directly from external memory through a dedicated SPI, DSPI or QSPI interface. A small cache
improves performance for typical applications.

Debug is available via the SWD interface.

Internal SRAM can contain code or data. It is addressed as a single 264 kB region, but physically partitioned into 6
banks to allow simultaneous parallel access from different masters.

DMA bus masters are available to offload repetitive data transfer tasks from the processors.

GPIO pins can be driven directly, or from a variety of dedicated logic functions.

Dedicated hardware for fixed functions such as SPI, 12C, UART.

Flexible configurable PIO controllers can be used to provide a wide variety of |0 functions.

A USB controller with embedded PHY can be used to provide FS/LS Host or Device connectivity under software control.
Four ADC inputs which are shared with GPIO pins.

Two PLLs to provide a fixed 48MHz clock for USB or ADC, and a flexible system clock up to 133MHz.

An internal Voltage Regulator to supply the core voltage so the end product only needs supply the 10 voltage.

1.4. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and
package drawings, can be found in Chapter 5.

1.4.1. Pin Locations

1.4. Pinout Reference 1

RP2040 Datasheet

Figure 3. RP2040

Pinout for QFN-56
7x7mm (reduced ePad
size) =
Zl - oS o a 3lzl8
21212121212 ala|Z|5]5(>
AL A A4 A all>alall - <|
=== = =] ella 1 || oo
alajafalafo|]a S|/ [S]
DDA |A|AD| N[>) 0l lnle|lel a
olo|e|oo|e|al=|23|2(3|=]|=]<<
56|55|54|53(52|51|50|49(48(47|46|45(44(43
10VDD | 1 O 42| I0VDD
GPIOO | 2 41| GP1029/ADC3
GPIO1 | 3 40(GP1028/ADC2
GPIO2 | 4 39(GP1027/ADC1
GPIO3 | 5 38| GP1026/ADCO
GPIO4 | 6 37| GP1025
GPIOS | 7 36| GP1024
GND
GPIO6 | 8 35| GP1023
GPIO7 | 9 34| GP1022
IovDD (10 33| IoVvDD
GPI08 (11 32| GPI021
GPIO9 (12 31| GP1020
GPIO10 |13 TOP VIEW. 30| GPI0O19
GPIO11 |14 29| GPIO18
15(16(17|18|19(20(21|22|23|24(25|26|27 |28

dieisivizl=z|Elala|x]o=] o/~
ARERRAHEEBERREEEIEE
oalala|f x|e|a|z|3 oo
o oo o|E 2 oo

1.4.2. Pin Descriptions

Table 1. The function
of each pin is briefly

dfsc’fbef here. Full | Gp1OX General-purpose digital input and output. RP2040 can connect one of a number of internal
electrica

specifications can be peripherals to each GPIO, or control GPIOs directly from software.
found in Chapter 5.

Name Description

GPIOx/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2040
ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash device, with execute-in-place support. These pins can
also be used as software-controlled GPIOs, if they are not required for flash access.

USB_DM and USB controller, supporting Full Speed device and Full/Low Speed host. A 27Q series termination
USB_DP resistor is required on each pin, but bus pullups and pulldowns are provided internally.

XIN and XOUT Connect a crystal to RP2040’s crystal oscillator. XIN can also be used as a single-ended CMOS
clock input, with XOUT disconnected. The USB bootloader requires a 12 MHz crystal or 12 MHz
clock input.

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is
required, this pin can be tied directly to I0VDD.

SWCLK and Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

SWDIO processors, and can be used to download code.

TESTEN Factory test mode pin. Tie to GND.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2040 die.
I0VDD Power supply for digital GPIOs, nominal voltage 1.8 V10 3.3V

1.4. Pinout Reference 12

RP2040 Datasheet
]

Table 2. General
Purpose Input/Output
(GPIO) Bank 0
Functions

Name Description

USB_VDD Power supply for internal USB Full Speed PHY, nominal voltage 3.3 V

ADC_AVDD Power supply for analogue-to-digital converter, nominal voltage 3.3 V

VREG_VIN Power input for the internal core voltage regulator, nominal voltage 1.8 V10 3.3V

VREG_VOUT Power output for the internal core voltage regulator, nominal voltage 1.1 V, 700 mA max current

DVDD Digital core power supply, nominal voltage 1.1 V. Can be connected to VREG_VOUT, or to some
other board-level power supply.

1.4.3. GPIO Functions

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal
peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIO0 and PIO1 can connect
to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to implement
many functions.

Function
GPIO |F1 F2 F3 F4 F5 |F6 F7 F8 F9
0 SPI0 RX UARTO TX 12CO SDA |[PWMOA |SIO |PIOO |PIO1 USB OVCUR DET
1 SPI0O CSn | UARTO RX 12COSCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS DET
2 SPI0O SCK | UARTOCTS |[I2C1SDA |PWM1A |SIO |PIOO |PIO1 USB VBUS EN
3 SPI0O TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB OVCUR DET
4 SPI0 RX UART1 TX 12CO SDA |PWM2A |SIO |PIOO |PIO1 USB VBUS DET
5 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |SIO [PIOO |PIO1 USB VBUS EN
6 SPI0O SCK | UART1CTS |[I2C1SDA |PWM3 A |SIO |PIOO |PIO1 USB OVCUR DET
7 SPIO TX UART1RTS |[I2C1SCL |PWM3B |[SIO |PIOO |PIO1 USB VBUS DET
8 SPIT RX UART1 TX 12CO SDA |PWM4 A |SIO |PIO0 |PIO1 USB VBUS EN
9 SPIT CSn | UART1 RX 12CO0SCL |PWM4B |SIO [PIOO |PIO1 USB OVCUR DET
10 SPI1 SCK | UART1 CTS |I2C1 SDA |PWM5SA ([SIO |PIOO |PIO1 USB VBUS DET
11 SPIT TX UART1RTS |[I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB VBUS EN
12 SPIT RX UARTO TX 12CO SDA |PWM6 A |SIO |PIO0 |PIO1 USB OVCUR DET
13 SPIT CSn | UARTO RX 12C0SCL |PWM6B |SIO [PIOO |PIO1 USB VBUS DET
14 SPI1 SCK | UARTO CTS |12C1 SDA |PWM7 A [SIO |PIOO |PIO1 USB VBUS EN
15 SPIT TX UARTORTS [I2C1SCL |PWM7B |[SIO |PIOO |PIO1 USB OVCUR DET
16 SPI0 RX UARTO TX 12CO SDA |PWMOA |SIO |PIOO |PIO1 USB VBUS DET
17 SPI0O CSn | UARTO RX 12C0SCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS EN
18 SPI0O SCK | UARTO CTS |12C1 SDA |PWM1A |[SIO |PIOO |PIO1 USB OVCUR DET
19 SPI0O TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB VBUS DET
20 SPIO RX UART1 TX 12CO SDA |PWM2A |[SIO |[PIO0 |PIOT |CLOCK GPINO USB VBUS EN
21 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |[SIO |[PIO0 |PIOT |CLOCKGPOUTO |USBOVCURDET

1.4. Pinout Reference

13

RP2040 Datasheet

Function
22 SPI0O SCK |UART1CTS |[12C1SDA |PWM3 A |SIO |PIOO |PIOT |CLOCK GPIN1 USB VBUS DET
23 SPIO TX UART1RTS [I2C1SCL |PWM3B |SIO |PIOO |PIOT |CLOCKGPOUT1 |USB VBUSEN
24 SPIT RX UART1 TX I2CO SDA |PWM4 A |SIO |PIOO |PIOT |CLOCKGPOUT2 |USBOVCURDET
25 SPIT CSn | UART1 RX [2CO0SCL |PWM4B |SIO |PIOO |PIOT |CLOCKGPOUT3 |USB VBUSDET
26 SPIT SCK |UART1CTS |[I2C1SDA |PWM5A |SIO |PIOO |PIO1 USB VBUS EN
27 SPIT TX UART1RTS |[I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB OVCUR DET
28 SPIT RX UARTO TX I2CO SDA |PWM6 A |SIO |PIOO |PIO1 USB VBUS DET
29 SPIT CSn | UARTO RX [2COSCL |PWM6B |[SIO |PIOO |PIO1 USB VBUS EN
Table 3. GPIO bank 0 Function Name Description

function descriptions

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTX Connect one of the internal PL011 UART peripherals to GPIO

12Cx Connect one of the internal DW 12C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output
channels (A/B). The B pin can also be used as an input, for frequency and duty cycle
measurement.

[e] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5)
must be selected for the processors to drive a GPIO, but the input is always connected,
so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable 10 blocks (PI0) to GPIO. PIO can implement a wide
variety of interfaces, and has its own internal pin mapping hardware, allowing flexible
placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7) must be
selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can
always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on
RP2040, e.g. to provide a 1 Hz clock for the RTC, or can be connected to an internal
frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL
outputs) onto GPIOs, with optional integer divide.

USB OVCUR DET/VBUS USB power control signals to/from the internal USB controller

DET/VBUS EN

1.4. Pinout Reference

14

RP2040 Datasheet

Chapter 2. System Description

This chapter describes the RP2040 key system features including processor, memory, how blocks are connected,
clocks, resets, power, and 10. Refer to Figure 2 for an overview diagram.

2.1. Bus Fabric

The RP2040 bus fabric routes addresses and data across the chip.

Figure 4 shows the high-level structure of the bus fabric. The main AHB-Lite crossbar routes addresses and data
between its 4 upstream ports and 10 downstream ports: up to four bus transfers can take place each cycle. All data
paths are 32 bits wide. Memory devices have dedicated ports on the main crossbar, to satisfy their high bandwidth
requirements. High-bandwidth AHB-Lite peripherals have a shared port on the crossbar, and an APB bridge provides bus
access to system control registers and lower-bandwidth peripherals.

Figure 4. RP2040 bus r Control
fabric overview.
Cortex-M0+ Cortex-MO+ System DMA
Core 0 Core 1 1-Write 1-Read

| | -

AHB-Lite Crossbar 4:10

AHB-Lite Splitter

SN D R A

ROM SRAMO SRAM1 SRAM2 SRAM3 SRAM4 SRAMS APB Flash PI0O PIOT USB
16 kB 64 kB 64 kB 64 kB 64 kB 4kB 4kB Bridge XIP
APB Splitter
Watch- Other peripherals
UARTO UART1 SPIO SPI 12C0 12C1 ADC PWM Timer 4o RTC and system
9 control registers

The bus fabric connects 4 AHB-Lite masters, i.e. devices which generate addresses:
® Processor core 0
® Processor core 1
® DMA controller Read port
® DMA controller Write port
These are routed through to 10 downstream ports on the main crossbar:
* ROM
® Flash XIP
® SRAM 0 to 5 (one port each)
® Fast AHB-Lite peripherals: PIO0, PIO1, USB, DMA control registers, XIP aux (one shared port)
® Bridge to all APB peripherals, and system control registers

The four bus masters can access any four different crossbar ports simultaneously, the bus fabric does not add wait
states to any AHB-Lite slave access. So at a system clock of 125 MHz the maximum sustained bus bandwidth is 2.0

]
2.1. Bus Fabric 15

RP2040 Datasheet

GB/s. The system address map has been arranged to make this parallel bandwidth available to as many software use
cases as possible — for example, the striped SRAM alias (Section 2.6.2) scatters main memory accesses across four
crossbar ports (SRAMO...3), so that more memory accesses can proceed in parallel.

2.1.1. AHB-Lite Crossbar

At the centre of the RP2040 bus fabric is a 4:10 fully-connected crossbar. Its 4 upstream ports are connected to the 4
system bus masters, and the 10 downstream ports connect to the highest-bandwidth AHB-Lite slaves (namely the
memory interfaces) and to lower layers of the fabric. Figure 5 shows the structure of a 2:3 AHB-Lite crossbar, arranged
identically to the 4:10 crossbar on RP2040, but easier to show in the diagram.

Figure 5. A 2:3 AHB- Upstream Upstream
Lite crosshar. Each Port 0 Port 1
upstream port 1 i

connects to a splitter,
which routes bus

13 13
requests toward one
of the 3 downstream
ports, and routes
responses back. Each
downstream port
21

Splitter Splitter

connects to an arbiter, Arbiter Arbiter Arbiter
which safely manages 21 21
concurrent access to t t t
the port.
Downstream Downstream Downstream
Port 0 Port 1 Port 2

The crossbar is built from two components:

® Splitters
o Perform coarse address decode
o Route requests (addresses, write data) to the downstream port indicated by the initial address decode
o Route responses (read data, bus errors) from the correct arbiter back to the upstream port

® Arbiters
o Manage concurrent requests to a downstream port
o Route responses (read data, bus errors) to the correct splitter
o Implement bus priority rules

The main crossbar on RP2040 consists of 4 1:10 splitters and 10 4:1 arbiters, with a mesh of 40 AHB-Lite bus channels
between them. Note that, as AHB-Lite is a pipelined bus, the splitter may be routing back a response to an earlier
request from downstream port A, whilst a new request to downstream port B is already in progress. This does not incur
any cycle penalty.

2.1.1.1. Bus Priority

The arbiters in the main AHB-Lite crossbar implement a two-level bus priority scheme. Priority levels are configured per-
master, using the BUS_PRIORITY register in the BUSCTRL register block.

When there are multiple simultaneous accesses to same arbiter, any requests from high-priority masters (priority level
1) will be considered before any requests from low-priority masters (priority 0). If multiple masters of the same priority
level attempt to access the same slave simultaneously, a round-robin tie break is applied, i.e. the arbiter grants access
to each master in turn.

2.1. Bus Fabric 16

RP2040 Datasheet

O NoTE

Priority arbitration only applies to multiple masters attempting to access the same slave on the same cycle.
Accesses to different slaves, e.g. different SRAM banks, can proceed simultaneously.

When accessing a slave with zero wait states, such as SRAM (i.e. can be accessed once per system clock cycle), high-
priority masters will never observe any slowdown or other timing effects caused by accesses from low-priority masters.
This allows guaranteed latency and throughput for hard real time use cases; it does however mean a low-priority master
may get stalled until there is a free cycle.

2.1.1.2. Bus Performance Counters

The performance counters automatically count accesses to the main AHB-Lite crossbar arbiters. This can assist in
diagnosing performance issues, in high-traffic use cases.

There are four performance counters. Each is a 24-bit saturating counter. Counter values can be read from
BUSCTRL_PERFCTRx, and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20 available
events at a time, as selected by BUSCTRL_PERFSELx. The available bus events are:

PERFSEL | Event Description

X

0 APB access, Completion of an access to the APB arbiter (which is upstream of all APB
contested peripherals), which was previously delayed due to an access by another master.

1 APB access Completion of an access to the APB arbiter

2 FASTPERI access, Completion of an access to the FASTPERI arbiter (which is upstream of PIOs, DMA
contested config port, USB, XIP aux FIFO port), which was previously delayed due to an access

by another master.

3 FASTPERI access Completion of an access to the FASTPERI arbiter

4 SRAMS access, Completion of an access to the SRAMS arbiter, which was previously delayed due to
contested an access by another master.

5 SRAMS access Completion of an access to the SRAMS5 arbiter

6 SRAM4 access, Completion of an access to the SRAM4 arbiter, which was previously delayed due to
contested an access by another master.

7 SRAM4 access Completion of an access to the SRAM4 arbiter

8 SRAMS access, Completion of an access to the SRAM3 arbiter, which was previously delayed due to
contested an access by another master.

9 SRAM3 access Completion of an access to the SRAM3 arbiter

10 SRAM2 access, Completion of an access to the SRAM2 arbiter, which was previously delayed due to
contested an access by another master.

11 SRAM2 access Completion of an access to the SRAM2 arbiter

12 SRAMT access, Completion of an access to the SRAM1 arbiter, which was previously delayed due to
contested an access by another master.

13 SRAM1 access Completion of an access to the SRAM1 arbiter

14 SRAMO access, Completion of an access to the SRAMO arbiter, which was previously delayed due to
contested an access by another master.

15 SRAMO access Completion of an access to the SRAMO arbiter

2.1. Bus Fabric

17

RP2040 Datasheet
]

PERFSEL | Event Description

X

16 XIP_MAIN access, Completion of an access to the XIP_MAIN arbiter, which was previously delayed due
contested to an access by another master.

17 XIP_MAIN access Completion of an access to the XIP_MAIN arbiter

18 ROM access, Completion of an access to the ROM arbiter, which was previously delayed due to an
contested access by another master.

19 ROM access Completion of an access to the ROM arbiter

2.1.2. Atomic Register Access
Each peripheral register block is allocated 4kB of address space, with registers accessed using one of 4 methods,
selected by address decode.

® Addr + 0x0000 : normal read write access

® Addr + 0x1000 : atomic XOR on write

® Addr + 0x2000 : atomic bitmask set on write

® Addr + 0x3000 : atomic bitmask clear on write

This allows individual fields of a control register to be modified without performing a read-modify-write sequence in
software: instead the changes are posted to the peripheral, and performed in-situ. Without this capability, it is difficult to
safely access 10 registers when an interrupt service routine is concurrent with code running in the foreground, or when
the two processors are running code in parallel.

The four atomic access aliases occupy a total of 16 kB. Most peripherals on RP2040 provide this functionality natively,
and atomic writes have the same timing as normal read/write access. Some peripherals (12C, UART, SPI and SSI)
instead have this functionality added using a bus interposer, which translates upstream atomic writes into downstream
read-modify-write sequences, at the boundary of the peripheral. This extends the access time by two system clock
cycles.

The SIO (Section 2.3.1), a single-cycle 10 block attached directly to the cores' 10 ports, does not support atomic
accesses at the bus level, although some individual registers (e.g. GPI0) have set/clear/xor aliases.

2.1.3. APB Bridge
The APB bridge interfaces the high-speed main AHB-Lite interconnect to the lower-bandwidth peripherals. Whilst the
AHB-Lite fabric offers zero-wait-state access everywhere, APB accesses have a cycle penalty:

® APB bus accesses take two cycles minimum (setup phase and access phase)

® The bridge adds an additional cycle to read accesses, as the bus request and response are registered

* The bridge adds two additional cycles to write accesses, as the APB setup phase can not begin until the AHB-Lite
write data is valid

As a result, the throughput of the APB portion of the bus fabric is somewhat lower than the AHB-Lite portion. However,
there is more than sufficient bandwidth to saturate the APB serial peripherals.

2.1.4. Narrow IO Register Writes

Memory-mapped 10 registers on RP2040 ignore the width of bus read/write accesses. They treat all writes as though
they were 32 bits in size. This means software can not use byte or halfword writes to modify part of an |0 register: any
write to an address where the 30 address MSBs match the register address will affect the contents of the entire
register.

2.1. Bus Fabric 18

RP2040 Datasheet
]

Table 4. List of
BUSCTRL registers

To update part of an IO register, without a read-modify-write sequence, the best solution on RP2040 is atomic
set/clear/XOR (see Section 2.1.2). Note that this is more flexible than byte or halfword writes, as any combination of
fields can be updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M0+), an 10 register will sample the entire 32-bit
write databus. The Cortex-M0+ and DMA on RP2040 will always replicate narrow data across the bus:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/system/narrow_io_write/narrow_io_write.c Lines 19 - 60

19 int main() {

20 stdio_init_all();

21

22 // We'll use WATCHDOG_SCRATCHO as a convenient 32 bit read/write register
23 // that we can assign arbitrary values to

24 io_rw_32 *scratch32 = &watchdog_hw->scratch[0];

2i5) // Alias the scratch register as two halfwords at offsets +0x0 and +0x2
26 volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;

27 // Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +6x3:
28 volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;

29

30 // Show that we can read/write the scratch register as normal:

31 printf("Writing 32 bit value\n");

32 *scratch32 = Oxdeadbeef;

83 printf("Should be @xdeadbeef: 8x%08x\n", *scratch32);

34

85 // We can do narrow reads just fine -- IO registers treat this as a 32 bit
36 // read, and the processor/DMA will pick out the correct byte lanes based
37 // on transfer size and address LSBs

38 printf("\nReading back 1 byte at a time\n");

39 // Little-endian!

40 printf("Should be ef be ad de: %02x %02x %02x %02x\n"

41 scratch8[@], scratch8[1], scratch8[2], scratch8[3]);

42

43 // The Cortex-M@+ and the RP2640 DMA replicate byte writes across the bus,
44 // and IO registers will sample the entire write bus always.

45 printf("\nWriting 8 bit value Oxa5 at offset 0\n");

46 scratch8[0] = @xa5;

47 // Read back the whole scratch register in one go

48 printf("Should be @xa5a5a5a5: 8x%08x\n", *scratch32);

49

50 // The IO register ignores the address LSBs [1:8] as well as the transfer
51 // size, so it doesn't matter what byte offset we use

52 printf("\nWriting 8 bit value at offset 1\n");

53 scratch8[1] = @x3c;

54 printf("Should be 8x3c3c3c3c: 0x%08x\n", *scratch32);

55!

56 // Halfword writes are also replicated across the write data bus

57 printf("\nWriting 16 bit value at offset 8\n");

58 scratch16[0] = @xfood;

59 printf("Should be @xfeedfeed: 6x%08x\n", *scratch32);

60 }

2.1.5. List of Registers

The Bus Fabric registers start at a base address of 0x40030000 (defined as BUSCTRL_BASE in SDK).

Offset Name Info

0x00 BUS_PRIORITY Set the priority of each master for bus arbitration.

2.1. Bus Fabric

19

https://github.com/raspberrypi/pico-examples/tree/master/system/narrow_io_write/narrow_io_write.c#L19-L60

RP2040 Datasheet

Offset Name Info

0x04 BUS_PRIORITY_ACK Bus priority acknowledge

0x08 PERFCTRO Bus fabric performance counter 0

0x0c PERFSELO Bus fabric performance event select for PERFCTRO
0x10 PERFCTR1 Bus fabric performance counter 1

0x14 PERFSEL1 Bus fabric performance event select for PERFCTR1
0x18 PERFCTR2 Bus fabric performance counter 2

OxT1c PERFSEL2 Bus fabric performance event select for PERFCTR2
0x20 PERFCTR3 Bus fabric performance counter 3

0x24 PERFSEL3 Bus fabric performance event select for PERFCTR3

BUSCTRL: BUS_PRIORITY Register
Offset: 0x00

Description

Set the priority of each master for bus arbitration.

Table 5. Bits Name Description Type Reset
BUS_PRIORITY
Register 31:13 | Reserved. - - -
12 DMA_W 0 - low priority, 1 - high priority RW 0x0
11:9 Reserved. = = =
8 DMA_R 0 - low priority, 1 - high priority RW 0x0
7:5 Reserved. = = =
4 PROC1 0 - low priority, 1 - high priority RW 0x0
3:1 Reserved. = = =
0 PROCO 0 - low priority, 1 - high priority RW 0x0
BUSCTRL: BUS_PRIORITY_ACK Register
Offset: 0x04
Description
Bus priority acknowledge
Table 6. Bits Description Type Reset
BUS_PRIORITY_ACK
Register 31:1 Reserved. - -
0 Goes to 1 once all arbiters have registered the new global priority levels. RO 0x0
Arbiters update their local priority when servicing a new nonsequential access.
In normal circumstances this will happen almost immediately.

BUSCTRL: PERFCTRO Register

Offset: 0x08

2.1. Bus Fabric 20

RP2040 Datasheet
]

Table 7. PERFCTRO
Register

Table 8. PERFSELO
Register

Description

Bus fabric performance counter 0

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sram5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 0 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSELO
BUSCTRL: PERFSELO Register
Offset: 0x0c
Description
Bus fabric performance event select for PERFCTRO
Bits Description Type Reset
BIlES) Reserved. = =
4:0 Select an event for PERFCTRO. Count either contested accesses, or all RW 0x1f

BUSCTRL: PERFCTR1 Register

Offset: 0x10

Description

Bus fabric performance counter 1

2.1. Bus Fabric

21

RP2040 Datasheet
]

Table 9. PERFCTRT
Register

Table 10. PERFSEL1
Register

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 1 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL1
BUSCTRL: PERFSEL1 Register
Offset: 0x14
Description
Bus fabric performance event select for PERFCTR1
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR1. Count either contested accesses, or all RW ox1f

BUSCTRL: PERFCTR2 Register

Offset: 0x18

Description

Bus fabric performance counter 2

2.1. Bus Fabric

22

RP2040 Datasheet
]

Table 11. PERFCTR2
Register

Table 12. PERFSEL2
Register

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 2 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL2
BUSCTRL: PERFSEL2 Register
Offset: Ox1c
Description
Bus fabric performance event select for PERFCTR2
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR2. Count either contested accesses, or all RW ox1f

BUSCTRL: PERFCTRS3 Register

Offset: 0x20

Description

Bus fabric performance counter 3

2.1. Bus Fabric

23

RP2040 Datasheet
]

Table 13. PERFCTR3
Register

Table 14. PERFSEL3
Register

Table 15. Address
Map Summary

Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 3 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL3
BUSCTRL: PERFSEL3 Register
Offset: 0x24
Description
Bus fabric performance event select for PERFCTR3
Bits Description Type Reset
BIlES Reserved. - -
4.0 Select an event for PERFCTR3. Count either contested accesses, or all RW ox1f

accesses, on a downstream port of the main crossbar.
0x00 — apb_contested
0x01 — apb

0x02 — fastperi_contested
0x03 — fastperi

0x04 — sramb5_contested
0x05 — sram5

0x06 — sram4_contested
0x07 — sram4

0x08 — sram3_contested
0x09 — sram3

0x0a — sram2_contested
0x0b — sram2

0x0c — sram1_contested
0x0d — sram1

0x0e — sram0_contested
0x0f — sram0

0x10 — xip_main_contested
0x11 — xip_main

0x12 — rom_contested
0x13 — rom

2.2. Address Map

The address map for the device is split in to sections as shown in Table 15. Details are shown in the following sections.

Unmapped address ranges raise a bus error when accessed.

2.2.1. Summary

ROM 0x00000000
XIP 0x10000000
SRAM 0x20000000
APB Peripherals 0x40000000

2.2. Address Map

24

RP2040 Datasheet
|

AHB-Lite Peripherals 0x50000000
IOPORT Registers 0xd0000000
Cortex-MO+ internal registers 0xe0000000

2.2.2. Detail

ROM:
ROM_BASE 0x00000000
XIP:
XIP_BASE 0x10000000
XIP_NOALLOC_BASE 0x11000000
XIP_NOCACHE_BASE 0x12000000
XIP_NOCACHE_NOALLOC_BASE 0x13000000
XIP_CTRL_BASE 0x14000000
XIP_SRAM_BASE 0x15000000
XIP_SRAM_END 0x15004000
XIP_SSI_BASE 0x18000000

SRAM. SRAMO-3 striped:

SRAM_BASE 0x20000000
SRAM_STRIPED_BASE 0x20000000
SRAM_STRIPED_END 0x20040000

SRAM 4-5 are always non-striped:

SRAM4_BASE 0x20040000
SRAMS5_BASE 0x20041000
SRAM_END 0x20042000

Non striped aliases of SRAMO-3:

SRAMO_BASE 0x21000000
SRAM1_BASE 0x21010000
SRAM2_BASE 0x21020000
SRAM3_BASE 0x21030000

APB Peripherals:

SYSINFO_BASE 0x40000000
SYSCFG_BASE 0x40004000
CLOCKS_BASE 0x40008000

]
2.2. Address Map 25

RP2040 Datasheet
|

RESETS_BASE 0x4000c000
PSM_BASE 0x40010000
IO_BANKO_BASE 0x40014000
I0_QSPI_BASE 0x40018000
PADS_BANKO_BASE 0x4001c000
PADS_QSPI_BASE 0x40020000
XOSC_BASE 0x40024000
PLL_SYS_BASE 0x40028000
PLL_USB_BASE 0x4002c000
BUSCTRL_BASE 0x40030000
UARTO_BASE 0x40034000
UART1_BASE 0x40038000
SPIO_BASE 0x4003¢000
SPIT1_BASE 0x40040000
12CO_BASE 0x40044000
I12C1_BASE 0x40043000
ADC_BASE 0x4004c000
PWM_BASE 0x40050000
TIMER_BASE 0x40054000
WATCHDOG_BASE 0x40058000
RTC_BASE 0x4005c000
ROSC_BASE 0x40060000
VREG_AND_CHIP_RESET_BASE 0x40064000
TBMAN_BASE 0x4006c000
AHB-Lite peripherals:
DMA_BASE 0x50000000
USB has a DPRAM at its base followed by registers:
USBCTRL_BASE 0x50100000
USBCTRL_DPRAM_BASE 0x50100000
USBCTRL_REGS_BASE 0x50110000

Remaining AHB-Lite peripherals:

PIO0_BASE 0x50200000

PIO1_BASE 0x50300000

XIP_AUX_BASE 0x50400000
IOPORT Peripherals:

]
2.2. Address Map 26

RP2040 Datasheet
]

Figure 6. Two Cortex-
MO0+ processors, each
with a dedicated 32-bit
AHB:-Lite bus port, for
code fetch, loads and
stores. The SIO is
connected to the
single-cycle IOPORT
bus of each processor,
and provides GPIO
access, two-way
communications, and
other core-local
peripherals. Both
processors can be
debugged via a single
multi-drop Serial Wire
Debug bus. 26
interrupts (plus NMI)
are routed to the NVIC
and WIC on each
processor.

SIO_BASE 0xd0000000
Cortex-MO+ Internal Peripherals:
PPB_BASE 0xe0000000

2.3. Processor subsystem

The RP2040 processor subsystem consists of two Arm Cortex-M0+ processors — each with its standard internal Arm
CPU peripherals — alongside external peripherals for GPIO access and inter-core communication. Details of the Arm

Cortex-MO+ processors, including the specific feature configuration used on RP2040, can be found in Section 2.4.

From peripherals

From external debugger

Serial Wi

Interrupts

e Debug

A 4

Y +

NVIC | DAP

Core 0
Cortex-M0+

R

NVIC | DAP

Bus Interface

«€— I0PORT <— IOPORT —»

Events

Core 1
Cortex-MO+

Bus Interface

AHB-Lite

To bus fabric

© NoTE

GPIO x36

To GPIO Muxing

AHB-Lite

To bus fabric

refer to processor 0, and processor 1 respectively.

The terms core0 and core, proc0 and proc1 are used interchangeably in RP2040Q’s registers and documentation to

The processors use a number of interfaces to communicate with the rest of the system:

® Each processor uses its own independent 32-bit AHB-Lite bus to access memory and memory-mapped peripherals
(more detail in Section 2.7)

® The single-cycle 10 block provides high-speed, deterministic access to GPIOs via each processor’'s IOPORT

® 26 system-level interrupts are routed to both processors

® A multi-drop Serial Wire Debug bus provides debug access to both processors from an external debug host

2.3.1.SI0

The Single-cycle 10 block (SIO) contains several peripherals that require low-latency, deterministic access from the
processors. It is accessed via each processor's IOPORT: this is an auxiliary bus port on the Cortex-M0+ which can
perform rapid 32-bit reads and writes. The SIO has a dedicated bus interface for each processor’'s IOPORT, as shown in
Figure 7. Processors access their IOPORT with normal load and store instructions, directed to the special IOPORT

address segment, 0xd0000000---0xdfffffff. The SIO appears as memory-mapped hardware within the IOPORT space.

|
2.3. Processor subsystem

27

RP2040 Datasheet

Figure 7. The single-
cycle 10 block
contains memory-
mapped hardware
which the processors
must be able to
access quickly. The
FIFOs and spinlocks
support message
passing and
synchronisation
between the two
cores. The shared
GPIO registers provide
fast and concurrency-
safe direct access to
GPIO-capable pins.
Some core-local
arithmetic hardware
can be used to
accelerate common
tasks on the
Processors.

© NoTE

The SIO is not connected to the main system bus due to its tight timing requirements. It can only be accessed by the
processors, or by the debugger via the processor debug ports.

Core 0 Core 1
Single-cycle 10
—— IOPORT I0PORT ——
<« CPUID O CPUID 1 >
> FIFOOto 1 >
< FIFO1to0 <
Bus . Bus
<> Hardware Spinlock x32 <>
Interface Interface
<—>» Integer Divider Integer Divider <€
<—>» |Interpolator 0 Interpolator 0 <€
<—>» Interpolator 1 Interpolator 1 <€
A A
A A
GPIO Registers Shared, atomic
set/clear/xor
GPIO x36
To GPIO Muxing

All IOPORT reads and writes (and therefore all SIO accesses) take place in exactly one cycle, unlike the main AHB-Lite
system bus, where the Cortex-M0+ requires two cycles for a load or store, and may have to wait longer due to
contention from other system bus masters. This is vital for interfaces such as GPIO, which have tight timing
requirements.

SIO registers are mapped to word-aligned addresses in the range 0xd0000000---0xd000017c. The remainder of the IOPORT
space is reserved for future use.

The SIO peripherals are described in more detail in the following sections.

2.3.1.1. CPUID

The register CPUID is the first register in the IOPORT space. Core 0 reads a value of 0 when accessing this address, and
core 1 reads a value of 1. This is a convenient method for software to determine on which core it is running. This is
checked during the initial boot sequence: both cores start running simultaneously, core 1 goes into a deep sleep state,
and core 0 continues with the main boot sequence.

2.3. Processor subsystem

28

RP2040 Datasheet

© IMPORTANT

CPUID should not be confused with the Cortex-M0+ CPUID register (Section 2.4.4.1.1) on each processor’s internal
Private Peripheral Bus, which lists the processor’s part number and version.

2.3.1.2. GPIO Control

The processors have access to GPIO registers for fast and direct control of pins with GPIO functionality. There are two
identical sets of registers:

® GPI0_x for direct control of 10 bank 0 (user GPIOs 0 to 29, starting at the LSB)
® GPI0_HI_x for direct control of the QSPI 10 bank (in the order SCLK, SSn, SDO, SD1, SD2, SD3, starting at the LSB)

© NoTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the
SI0 GPIO function. See Table 289.

These GPIO registers are shared between the two cores, and both cores can access them simultaneously. There are
three registers for each bank:

e Qutput registers, GPIO_OUT and GPIO_HI_OUT, are used to set the output level of the GPIO (1/0 for high/low)

® QOutput enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1
for drive high/low based on GPIO_OUT and GPIO_HI_OUT.

® Input registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs

Reading GPIO_IN returns all 30 GPIO values (or 6 for GPIO_HI_IN) in a single read. Software can then mask out
individual pins it is interested in.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 518 - 530

518 * read using gpio_get()).

519 *

520 * To avoid races, this function must not be used for read-modify-write

521 * sequences when driving GPIOs -- instead functions like gpio_put() should be
522 * used to atomically update GPIOs. This accessor is intended for debug use
523 * only.

524 *

525 * \param gpio GPIO number

526 * \return true if the GPIO output level is high, false if low.

527 */

528 static inline bool gpio_get_out_level(uint gpio) {

529 return !!(sio_hw->gpio_out & (1u << gpio));

530 }

The 0UT and OE registers also have atomic SET, CLR, and XOR aliases, which allows software to update a subset of the
pins in one operation. This is vital not only for safe parallel GPIO access between the two cores, but also safe
concurrent GPIO access in an interrupt handler and foreground code running on one core.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 452 - 454

452 static inline void gpio_set_mask(uint32_t mask) {
453 sio_hw->gpio_set = mask;
454 }

2.3. Processor subsystem 29

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L518-L530
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L452-L454

RP2040 Datasheet
]

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 461 - 463

461 static inline void gpio_clr_mask(uint32_t mask) {
462 sio_hw->gpio_clr = mask;
463 }

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 521 - 530

521 * sequences when driving GPIOs -- instead functions like gpio_put() should be
522 * used to atomically update GPIOs. This accessor is intended for debug use
523 * only.

524 *

525 * \param gpio GPIO number

526 * \return true if the GPIO output level is high, false if low.

527 */

528 static inline bool gpio_get_out_level(uint gpio) {

529 return !!(sio_hw->gpio_out & (1u << gpio));

530 }

If both processors write to an 0UT or OE register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result
is as though core 0 wrote first, and core 1 wrote immediately afterward. For example, if core 0 SETs a bit, and core 1
simultaneously XORs it, the bit will be set to 0, irrespective of it original value.

© NoTE

This is a conceptual model for the result that is produced when two cores write to a GPIO register simultaneously.
The register does not actually contain this intermediate value at any point. In the previous example, if the pin is
initially 0, and core 0 performs a SET while core 1 performs a XOR, the GPIO output remains low without any positive
glitch.

2.3.1.3. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software
resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCKO to SPINLOCK31). Software
interacts with each spinlock with one of the following operations:

® Read: attempt to claim the lock. Read value is nonzero if the lock was successfully claimed, or zero if the lock had
already been claimed by a previous read.

® Write (any value): release the lock. The next attempt to claim the lock will be successful.
If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning" on the lock) until it is successfully
claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect the
short critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

2.3.1.4. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits
wide, and eight entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be
written by core 1, and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR, and reads from its incoming FIFO by reading from FIFO_RD.

2.3. Processor subsystem 30

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L461-L463
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L521-L530

RP2040 Datasheet
]

A status register, FIFO_ST, provides the following status signals:
® Incoming FIFO contains data (VLD)
® Qutgoing FIFO has room for more data (RDY)
® The incoming FIFO was read from while empty at some point in the past (ROE)
® The outgoing FIFO was written to while full at some point in the past (WOF)

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.
The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of
invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

The SIO has a FIFO IRQ output for each core, mapped to system IRQ numbers 15 and 16. Each IRQ output is the logical
OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if any of these three bits is high,
and clears again when they are all low. The ROE and W0F flags are cleared by writing any value to FIFO_ST, and the VLD flag
is cleared by reading data from the FIFO until empty.

If the corresponding interrupt line is enabled in the Cortex-M0+ NVIC, then the processor will take an interrupt each time
data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full). Typically Core
0 will use IRQ15 and core 1 will use IRQ16. If the IRQs are used the other way round then it is difficult for the core that
has been interrupted to correctly identify the reason for the interrupt as the core doesn’t have access to the other core’s
FIFO status register.

© NoTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler will trigger when
data appears in the FIFO (raising the VLD flag), and the interrupt handler clears the IRQ by reading data from the FIFO
until VLD goes low once more.

The inter-processor FIFOs and the Cortex-M0+ Event signals are used by the bootrom (Section 2.8) wait_for_vector
routine, where core 1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and
vector table through the FIFO.

2.3.1.5. Integer Divider

The SIO provides one 8-cycle signed/unsigned divide/modulo module to each of the cores. Calculation is started by
writing a dividend and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient /
and remainder % of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result
registers DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation
to complete, or software can insert a fixed 8-cycle delay.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/divider.S Lines 10 - 30

10 .macro __divider_delay

11 // delay 8 cycles
12 b 1f

13 1: b 1f

14 1: b 1f

15 1: b 1f

16 1:

17 .endm

18

19 .align 2

20

21 regular_func_with_section hw_divider_divmod_s32
22 1dr r3, =(SIO_BASE)

23 str r@, [r3, #SIO_DIV_SDIVIDEND_OFFSET]
24 str r1, [r3, #SIO_DIV_SDIVISOR_OFFSET]
25 __divider_delay

|
2.3. Processor subsystem 31

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/divider.S#L10-L30

RP2040 Datasheet

26 // return 64 bit value so we can efficiently return both (note quotient must be read
last)
27 1dr r1, [r3, #SIO_DIV_REMAINDER_OFFSET]
28 1dr r@, [r3, #SIO_DIV_QUOTIENT_OFFSET]
29 bx 1r
O NoTE

Software is free to perform other non divider operations during these 8 cycles.

There are two aliases of the operand registers: writing to the signed alias (DIV_SDIVIDEND and DIV_SDIVISOR) will
initiate a signed calculation, and the other (DIV_UDIVIDEND and DIV_UDIVISOR) will initiate an unsigned calculation.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/divider.S Lines 36 - 44

36 regular_func_with_section hw_divider_divmod_u32

37 1dr r3, =(SIO_BASE)
38 str r@, [r3, #SIO_DIV_UDIVIDEND_OFFSET]
39 str r1, [r3, #SIO_DIV_UDIVISOR_OFFSET]
40 __divider_delay
41 // return 64 bit value so we can efficiently return both (note quotient must be read
last)
42 1dr r1, [r3, #SIO_DIV_REMAINDER_OFFSET]
43 1dr r@, [r3, #SIO_DIV_QUOTIENT_OFFSET]
44 bx 1r
© NoTE

A new calculation begins immediately with every write to an operand register, and a new operand write immediately
squashes any calculation currently in progress. For example, when dividing many numbers by the same divisor, only
xDIVIDEND needs to be written, and the signedness of each calculation is determined by whether SDIVIDEND or UDIVIDEND
is written.

To support save and restore on interrupt handler entry/exit (or on e.g. an RTOS context switch), the result registers are
also writable. Writing to a result register will cancel any operation in progress at the time. The DIV_CSR.DIRTY flag can
help make save/restore more efficient: this flag is set when any divider register (operand or result) is written to, and
cleared when the quotient is read.

O NoOTE

When enabled, the default divider AEABI support maps C level / and % to the hardware divider. When building
software using the SDK and using the divider directly, it is important to read the quotient register last. This ensures
the partial divider state will be correctly saved and restored by any interrupt code that uses the divider. You should
read the quotient register whether you need the value or not.

The SDK module pico_divider https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_divider/include/
pico/divider.h provides both the AEABI implementation needed to hook the C / and % operators for both 32-bit and 64-bit
integer division, as well as some additional C functions that return quotients and remainders at the same time. All of
these functions correctly save and restore the hardware divider state (when dirty) so that they can be used in either user
or IRQ handler code.

The SDK module hardware_divider https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/
hardware_divider/include/hardware/divider.h provides lower level macros and helper functions for accessing the
hardware_divider, but these do not save and restore the hardware divider state (although this header does provide
separate functions to do so).

2.3. Processor subsystem 32

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/divider.S#L36-L44
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/include/hardware/divider.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_divider/include/hardware/divider.h

RP2040 Datasheet
]

Figure 8. An
interpolator. The two
accumulator registers
and three base
registers have single-
cycle read/write
access from the
processor. The
interpolator is
organised into two
lanes, which perform
masking, shifting and
sign-extension
operations on the two
accumulators. This
produces three
possible results, by
adding the
intermediate
shift/mask values to
the three base
registers. From left to
right, the multiplexers
on each lane are
controlled by the
following flags in the
CTRL registers:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

2.3.1.6. Interpolator

Each core is equipped with two interpolators (INTERP and INTERP1) which can accelerate tasks by combining certain pre-
configured operations into a single processor cycle. Intended for cases where the pre-configured operation is repeated
many times, this results in code which uses both fewer CPU cycles and fewer CPU registers in the time-critical sections
of the code.

The interpolators are used to accelerate audio operations within the SDK, but their flexible configuration makes it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

Base 0
Result 0 0 Sign-extend
Accumulator 0 » Right Shift —» Mask 'gn-exten Result 0
fromMask
Result 1 1
Accumulator 1
Base 2 Result 2
Accumulator 0
Result 0 1 Sign-extend
Accumulator 1 » Right Shift —» Mask 'gn-exten Result 1
fromMask
Result 1 0
Base 1

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The
processor can also perform an addition on one of the two accumulators ACCUM@ or ACCUM1 by writing to the corresponding
ACCUMx_ADD register.

The three results are available in the read-only locations PEEK®, PEEK1, PEEK2. Reading from these locations does not
change the state of the interpolator. The results are also aliased at the locations P0P@, POP1, POP2; reading from a POPx alias
returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the
accumulators. This can be used to advance the state of interpolator each time a result is read.

Additionally the interpolator supports simple fractional blending between two values as well as clamping values such
that they lie within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {

12 puts("9 times table:");

13

14 // Initialise lane @ on interp@ on this core
15 interp_config cfg = interp_default_config();
16 interp_set_config(interp®, 0, &cfg);

17

18 interp@->accum[@] = @;

19 interp@->base[@] = 9;

20

21 for (int i = @; i < 10; ++1i)

22 printf("%d\n", interp@->pop[@]);

23 }

|
2.3. Processor subsystem 33

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L11-L23

RP2040 Datasheet

Figure 9. Each lane of
each interpolator can
be configured to
perform mask, shift
and sign-extension on
one of the
accumulators. This is
fed into adders which
produces final results,
which may optionally
be fed back into the
accumulators with
each read. The
datapath can be
configured using a
handful of 32-bit
multiplexers. From left
to right, these are
controlled by the
following CTRL flags:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

O NoTE

By sheer coincidence, the interpolators are extremely well suited to SNES MODE7-style graphics routines. For
example, on each core, INTERPO can provide a stream of tile lookups for some affine transform, and INTERP1 can
provide offsets into the tiles for the same transform.

2.3.1.6.1. Lane Operations
BESHLD 0 Sign-extend Add to BASE1
Accumulator 0 » Right Shift —» Mask 'gn-exten °
fromMask (for PEEKO/POPO)
Result 1 1
Accumulator 1 Add to BASE2
(forms part of
PEEK2/POP2)

Each lane performs these three operations, in sequence:

* Aright shift by CTRL_LANEx_SHIFT (O to 31 bits)

® A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

* A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if
CTRL_LANEx_SIGNED is set

For example, if:

® ACCUM@ = @xdeadbeef

® CTRL_LANE@_SHIFT =8

® CTRL_LANE@_MASK_LSB = 4

® CTRL_LANE@_MASK_MSB =7

® CTRL_SIGNED =1

Then lane 0 would produce the following results at each stage:

® Right shift by 8 to produce 0x00deadbe

® Mask bits 7 to 4 to produce 0x00deadbe & 0x f0 = 0x bo

® Sign-extend up from bit 7 to produce oxffffffbo

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 25 - 46

25
26
27
28
29
30
31
32
33
34
35

36
37
38

void moving_mask() {
interp_config cfg = interp_default_config();

interp@->accum[@] = @x1234abcd;
puts("Masking:");
printf("ACCUMB = %@8x\n", interp@->accum[@]);
for (int 1 = 0; i < 8; ++i) {
// LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register”
interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
interp_set_config(interp@, 0, &cfg);
// Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
added
printf("Nibble %d: %@8x\n", i, interp@->add_raw[0]);
}

|
2.3. Processor subsystem 34

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L25-L46

RP2040 Datasheet

39
40
41
42
43
44
45
46 }

puts("Masking with sign extension:");
interp_config_set_signed(&cfg, true);
for (int i = @; i < 8; ++i) {

interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
interp_set_config(interp®, @, &cfg);
printf("Nibble %d: %@8x\n", i, interp@->add_raw[0]);

The above example should print:

ACCUMO = 1234abcd
Nibble 0: ©000000d
Nibble 1: 6000006cO
Nibble 2: 60000b00
Nibble 3: 00002000
Nibble 4: 00040000
Nibble 5: 60300000
Nibble 6: 02000000
Nibble 7: 10000000
Masking with sign extension:
Nibble @: fffffffd
Nibble 1: ffffffce
Nibble 2: fffffboe
Nibble 3: ffffa0e0
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 62000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators

dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 48 - 63

48 void cross_lanes() {

interp_config cfg = interp_default_config();
interp_config_set_cross_result(&cfg, true);
// ACCUM@ gets lane 1 result:
interp_set_config(interp@, @, &cfg);

// ACCUM1 gets lane 0 result:
interp_set_config(interp®, 1, &cfg);

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 }

interp@->accum[@]

123;

interp@->accum[1] = 456;
interp@->base[@] = 1;
interp@->base[1] = 0;
puts("Lane result crossover:");
for (int i = 0; i < 10; ++1i)
printf("PEEK®, POP1: %d, %d\n", interp@->peek[@], interp@->pop[1]);

This should print:

PEEK@, POP1: 124, 456
PEEK@, POP1: 457, 124
PEEK@, POP1: 125, 457

. This is useful e.g. for audio

2.3. Processor subsystem

35

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L48-L63

RP2040 Datasheet

PEEKO,
PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEK®,
PEEK®,

POP1: 458, 125
POP1: 126, 458
POP1: 459, 126
POP1: 127, 459
POP1: 460, 127
POP1: 128, 460
POP1: 461, 128

2.3.1.6.2. Blend Mode

Blend mode is available on INTERPG on each core, and is enabled by the CTRL_LANE@_BLEND control flag. It performs linear
interpolation, which we define as follows:

x = xo+ a(x;— xq), for0 < a<l

Where Xq is the register BASE®, X1 is the register BASE1, and a is a fractional value formed from the least significant 8 bits

of the lane 1 shift and mask value.

Blend mode has the following differences from normal mode:

® PEEK®, POPQ return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31
down to 24.

® PEEK1, POP1 return the linear interpolation between BASE® and BASE1

® PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane 0 shift and mask value)

The result of the linear interpolation is equal to BASEG when the alpha value is 0, and equal to BASE® + 255/256 * (BASE1 -

BASE®) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 65 - 84

65 void simple_blend1() {

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84 }

puts("Simple blend 1:");

interp_config cfg = interp_default_config();
interp_config_set_blend(&cfg, true);
interp_set_config(interp@, 0, &cfg);

cfg = interp_default_config();
interp_set_config(interp®, 1, &cfg);

500;
1000;

interp0@->base[0]
interp@->base[1]

for (int i = 0; i <= 6; i++) {
// set fraction to value between 6 and 255
interp@->accum[1] = 255 * i / 6;
// = 560 + (1000 - 500) * i / 6;
printf("%d\n", (int) interp@->peek[1]);

This should print (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832

2.3. Processor subsystem

36

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L65-L84

RP2040 Datasheet
]

914
998

CTRL_LANET_SIGNED controls whether BASE@ and BASE1 are sign-extended for this interpolation (this sign extension is
required because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE@_SIGNED continues
to control the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 87 - 118

87 void print_simple_blend2_results(bool is_signed) {

88 // lane 1 signed flag controls whether base 0/1 are treated as signed or unsigned
89 interp_config cfg = interp_default_config();
90 interp_config_set_signed(&cfg, is_signed);
91 interp_set_config(interp®, 1, &cfg);

92

93 for (int i = 0; 1 <= 6; i++) {

94 interp@->accum[1] = 255 * i / 6;

95 if (is_signed) {

96 printf("%d\n", (int) interp®@->peek[1]);
97 } else {

98 printf("0x%08x\n", (uint) interp®->peek[1]);
99 }

100 }

101 }

102

103 void simple_blend2() {

104 puts("Simple blend 2:");

105

106 interp_config cfg = interp_default_config();
107 interp_config_set_blend(&cfg, true);

108 interp_set_config(interp®, 0, &cfg);

109

110 interp@->base[0] = -1000;

111 interp@->base[1] = 1000;

112

113 puts("signed:");

114 print_simple_blend2_results(true);

115

116 puts("unsigned:");

117 print_simple_blend2_results(false);

118 }

This should print:

signed:
-1000

-672

-336

-8

328

656

992
unsigned:
oxfffffc18
0xd5fffd6o
oxaafffebo
ox80fffff8
0x56000148
0x2c000290

|
2.3. Processor subsystem 37

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L87-L118

RP2040 Datasheet
]

0x010003e0

Finally, in blend mode when using the BASE_1AND® register to send a 16-bit value to each of BASE@ and BASE1 with a single
32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by
CTRL_LANET_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE@_SIGNED affects extension
into BASE@ and CTRL_LANE1_SIGNED affects extension into BASE1.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 121 - 142

121 void simple_blend3() {

122 puts("Simple blend 3:");

123

124 interp_config cfg = interp_default_config();
125 interp_config_set_blend(&cfg, true);

126 interp_set_config(interp@, 0, &cfg);

127

128 cfg = interp_default_config();

129 interp_set_config(interp@, 1, &cfg);

130

131 interp@->accum[1] = 128;

132 interp@->basef1 = 0x30005000;

133 printf("0x%08x\n", (int) interp@->peek[1]);
134 interp@->baseB1 = 0xe000f000;

135 printf("0x%08x\n", (int) interp@->peek[1]);
136

137 interp_config_set_signed(&cfg, true);

138 interp_set_config(interp®, 1, &cfg);

139

140 interp@->baseB1 = 0xe000f000;

141 printf("0x%08x\n", (int) interp@->peek[1]);
142 }

This should print:

0x00004000
0x0000e800
oxffffe800

2.3.1.6.3. Clamp Mode

Clamp mode is available on INTERP1 on each core, and is enabled by the CTRL_LANE@_CLAMP control flag. In clamp mode, the
PEEK0/POPO result is the lane value (shifted, masked, sign-extended AccumMe) clamped between BASE@ and BASET. In other
words, if the lane value is greater than BASE1, a value of BASE1 is produced; if less than BASE®, a value of BASE® is produced;
otherwise, the value passes through. No addition is performed. The signedness of these comparisons is controlled by
the CTRL_LANE@_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 188 - 206

188 void clamp() {

189 puts("Clamp:");

190 interp_config cfg = interp_default_config();

191 interp_config_set_clamp(&cfg, true);

192 interp_config_set_shift(&cfg, 2);

193 // set mask according to new position of sign bit..

2.3. Processor subsystem 38

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L121-L142
https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L188-L206

RP2040 Datasheet
]

194 interp_config_set_mask(&cfg, 0, 29);

195 // ...so that the shifted value is correctly sign extended
196 interp_config_set_signed(&cfg, true);

197 interp_set_config(interp1, 0, &cfg);

198

199 interpl1->base[0] = 0;

200 interpl->base[1] = 255;

201

202 for (int i = -10824; i <= 1024; i += 256) {

203 interpl->accum[@] = i;

204 printf("%d\t%d\n", i, (int) interpl1->peek[0]);
205 }

206 }

This should print:

-1024 0
-768 0
-512 0
-256 0
0 0
256 64
512 128
768 192
1024 255

2.3.1.6.4. Sample Use Case: Linear Interpolation

Linear interpolation is a more complete example of using blend mode in conjunction with other interpolator
functionality:

In this example, AcCUM@ is used to track a fixed point (integer/fraction) position within a list of values to be interpolated.
Lane 0 is used to produce an address into the value array for the integer part of the position. The fractional part of the
position is shifted to produce a value from 0-255 for the blend. The blend is performed between two consecutive values
in the array.

Finally the fractional position is updated via a single write to ACCUM@_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 144 - 186

144 void linear_interpolation() {

145 puts("Linear interpolation:");

146 const int uv_fractional_bits = 12;

147

148 // for lane @

149 // shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0)
150 // to 0000 00006 00OX XXXX XXXX XXXX XXXX XXX0

151 // i.e. non fractional part times 2 (for uintl16_t)

152 interp_config cfg = interp_default_config();

153 interp_config_set_shift(&cfg, uv_fractional_bits - 1);

154 interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);

155 interp_config_set_blend(&cfg, true);

156 interp_set_config(interp®, 0, &cfg);

157

158 // for lane 1

159 // shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @ via cross input)
160 // to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF

161

|
2.3. Processor subsystem 39

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L144-L186

RP2040 Datasheet
]

162 cfg = interp_default_config();

163 interp_config_set_shift(&cfg, uv_fractional_bits - 8);

164 interp_config_set_signed(&cfg, true);

165 interp_config_set_cross_input(&cfg, true); // signed blending
166 interp_set_config(interp@d, 1, &cfg);

167

168 int16_t samples[] = {0, 10, -208, -1000, 500};

169

170 // step is 1/4 in our fractional representation

171 uint step = (1 << uv_fractional_bits) / 4;

172

173 interp@->accum[@] = O; // initial sample_offset;

174 interp@->base[2] = (uintptr_t) samples;

175 for (int i = @; i < 16; i++) {

176 // result2 = samples + (lane@ raw result)

177 // i.e. ptr to the first of two samples to blend between
178 int16_t *sample_pair = (int16_t *) interp@->peek[2];
179 interp@->base[0] = sample_pair[0];

180 interp@->base[1] = sample_pair[1];

181 printf("%d\t(%d%% between %d and %d)\n", (int) interp@->peek[1],
182 100 * (interp@->add_raw[1] & oxff) / oxff,

183 sample_pair[@], sample_pair[1]);

184 interp@->add_raw[@8] = step;

185 }

186 }

This should print:

0 (8% between @ and 10)

2 (25% between 0 and 10)

5 (50% between 0 and 10)

7 (75% between 0 and 10)

10 (8% between 10 and -20)

2 (25% between 10 and -20)

=5 (50% between 10 and -20)
-13 (75% between 10 and -20)
-20 (8% between -20 and -1000)
-265 (25% between -20 and -1000)
-510 (50% between -20 and -1000)
-755 (75% between -20 and -1000)
-1600 (0% between -1000 and 500)
-625 (25% between -1000 and 500)
-250 (50% between -1000 and 500)
125 (75% between -1000 and 500)

This method is used for fast approximate audio upscaling in the SDK

2.3.1.6.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed point arithmetic for texture coordinates, and stepping
a fixed amount in each coordinate for every pixel in a scanline. The integer part of the texture coordinates are used to
form an address within the texture to lookup a pixel colour.

By using two lanes, all three base values and the CTRL_LANEx_ADD_RAW flag, it is possible to reduce what would be quite an
expensive CPU operation to a single cycle iteration using the interpolator.

2.3. Processor subsystem 40

RP2040 Datasheet

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c Lines 209 - 267

209 void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint
texture_height_bits,

210
211
212

uint uv_fractional_bits) {
interp_config cfg = interp_default_config();
// set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when

adding

213
214
215
216
217
218
219
220

// it to the the lane base to make the lane result
interp_config_set_add_raw(&cfg, true);
interp_config_set_shift(&cfg, uv_fractional_bits);
interp_config_set_mask(&cfg, 0, texture_width_bits - 1);
interp_set_config(interp@, 0, &cfg);

interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);
interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits +

texture_height_bits - 1);

221
222
223
224 }
225

interp_set_config(interp®, 1, &cfg);

interp@->base[2] = (uintptr_t) texture;

226 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
uint count) {

227
228
229
230
231
232
233
234
235

1);

236

// u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits
// du, dv are texture coordinate steps across the span in same fixed point.
interp@->accum[@] = u;
interp@->base[0] = du;
interp@->accum[1] = v;
interp@->base[1] = dv;
for (uint i = @; i < count; i++) {
// equivalent to
// uint32_t sm_result@ = (accum@ >> uv_fractional_bits) & (1 << (texture_width_bits -

// uint32_t sm_resultl = (accuml >> uv_fractional_bits) & (1 << (texture_height_bits

- 1),

237
238
239
240
241
242
243
244
245
246 }
247

// uint8_t *address = texture + sm_result® + (sm_resultl << texture_width_bits);
// output[i] = *address;
// accum@ = du + accum@;
// accuml = dv + accuml;

// result2 is the texture address for the current pixel;
// popping the result advances to the next iteration
output[i] = *(uint8_t *) interp®->pop[2];

248 void texture_mapping() {

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

puts("Affine Texture mapping (with texture wrap):");

uint8_t texture[] = {

0x00, 0x01, 0x02, 0x03,

0x10, 0x11, 0x12, 0x13,

0x20, Ox21, 0x22, Ox23,

0x30, 0x31, 0x32, 0x33,
b
// 4x4 texture
texture_mapping_setup(texture, 2, 2, 16);
uint8_t output[12];
uint32_t du = 65536 / 2; // step of 1/2
uint32_t dv = 65536 / 3; // step of 1/3
texture_mapped_span(output, 0, @, du, dv, 12);

2.3. Processor subsystem

41

https://github.com/raspberrypi/pico-examples/tree/master/interp/hello_interp/hello_interp.c#L209-L267

RP2040 Datasheet

264
265
266
267 }

for (uint i = @; 1 < 12; i++) {
printf("0x%02x\n", output[i]);

This should print:

0x00
0x00
0x01
0x01
0x12
0x12
0x13
0x23
0x20
0x20
0x31
0x31

2.3.1.7. List of Registers

The SIO registers start at a base address of 0xd8000000 (defined as SIO_BASE in SDK).

Tab"e 16 List of $10 Offset Name Info

registers
0x000 CPUID Processor core identifier
0x004 GPIO_IN Input value for GPIO pins
0x008 GPIO_HI_IN Input value for QSPI pins
0x010 GPIO_OUT GPIO output value
0x014 GPIO_OUT_SET GPIO output value set
0x018 GPIO_OUT_CLR GPIO output value clear
0x01c GPIO_OUT_XOR GPIO output value XOR
0x020 GPIO_OE GPIO output enable
0x024 GPIO_OE_SET GPIO output enable set
0x028 GPIO_OE_CLR GPIO output enable clear
0x02c GPIO_OE_XOR GPIO output enable XOR
0x030 GPIO_HI_OUT QSPI output value
0x034 GPIO_HI_OUT_SET QSPI output value set
0x038 GPIO_HI_OUT_CLR QSPI output value clear
0x03c GPIO_HI_OUT_XOR QSPI output value XOR
0x040 GPIO_HI_OE QSPI output enable
0x044 GPIO_HI_OE_SET QSPI output enable set
0x048 GPIO_HI_OE_CLR QSPI output enable clear
0x04c GPIO_HI_OE_XOR QSPI output enable XOR

2.3. Processor subsystem

42

RP2040 Datasheet

Offset Name Info

0x050 FIFO_ST Status register for inter-core FIFOs (mailboxes).

0x054 FIFO_WR Write access to this core’s TX FIFO

0x058 FIFO_RD Read access to this core’s RX FIFO

0x05¢ SPINLOCK_ST Spinlock state

0x060 DIV_UDIVIDEND Divider unsigned dividend

0x064 DIV_UDIVISOR Divider unsigned divisor

0x068 DIV_SDIVIDEND Divider signed dividend

0x06¢ DIV_SDIVISOR Divider signed divisor

0x070 DIV_QUOTIENT Divider result quotient

0x074 DIV_REMAINDER Divider result remainder

0x078 DIV_CSR Control and status register for divider.

0x080 INTERPO_ACCUMO Read/write access to accumulator 0

0x084 INTERPO_ACCUM1 Read/write access to accumulator 1

0x088 INTERPO_BASEO Read/write access to BASEQ register.

0x08c INTERPO_BASE1 Read/write access to BASET1 register.

0x090 INTERPO_BASE2 Read/write access to BASE2 register.

0x094 INTERPO_POP_LANEO Read LANEDO result, and simultaneously write lane results to both
accumulators (POP).

0x098 INTERPO_POP_LANE1 Read LANET result, and simultaneously write lane results to both
accumulators (POP).

0x09¢c INTERPO_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0a0 INTERPO_PEEK_LANEO Read LANEQO result, without altering any internal state (PEEK).

0x0a4 INTERPO_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

0x0a8 INTERPO_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ac INTERPO_CTRL_LANEOQ Control register for lane 0

0x0b0 INTERPO_CTRL_LANE1 Control register for lane 1

0x0b4 INTERPO_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0b8 INTERPO_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0bc INTERPO_BASE_TANDO On write, the lower 16 bits go to BASEO, upper bits to BASE1
simultaneously.

0x0c0 INTERP1_ACCUMO Read/write access to accumulator 0

0x0c4 INTERP1_ACCUM1 Read/write access to accumulator 1

0x0c8 INTERP1_BASEO Read/write access to BASEQ register.

0x0cc INTERP1_BASET1 Read/write access to BASET register.

0x0d0 INTERP1_BASE2 Read/write access to BASE2 register.

2.3. Processor subsystem

43

RP2040 Datasheet

Offset Name Info

0x0d4 INTERP1_POP_LANEO Read LANEQO result, and simultaneously write lane results to both
accumulators (POP).

0x0d8 INTERP1_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both
accumulators (POP).

0x0dc INTERP1_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0e0 INTERP1_PEEK_LANEO Read LANEQ result, without altering any internal state (PEEK).

0x0e4 INTERP1_PEEK_LANE1 Read LANET1 result, without altering any internal state (PEEK).

0x0e8 INTERP1_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ec INTERP1_CTRL_LANEO Control register for lane 0

0x0f0 INTERP1_CTRL_LANE1 Control register for lane 1

0x0f4 INTERP1_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0f8 INTERP1_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0fc INTERP1_BASE_TANDO On write, the lower 16 bits go to BASEOQ, upper bits to BASE1
simultaneously.

0x100 SPINLOCKO Spinlock register 0

0x104 SPINLOCK1 Spinlock register 1

0x108 SPINLOCK2 Spinlock register 2

0x10c SPINLOCK3 Spinlock register 3

0x110 SPINLOCK4 Spinlock register 4

0x114 SPINLOCKS5 Spinlock register 5

0x118 SPINLOCK6 Spinlock register 6

Ox11c SPINLOCK? Spinlock register 7

0x120 SPINLOCKS8 Spinlock register 8

0x124 SPINLOCK9 Spinlock register 9

0x128 SPINLOCK10 Spinlock register 10

0x12c SPINLOCK11 Spinlock register 11

0x130 SPINLOCK12 Spinlock register 12

0x134 SPINLOCK13 Spinlock register 13

0x138 SPINLOCK14 Spinlock register 14

0x13c SPINLOCK15 Spinlock register 15

0x140 SPINLOCK16 Spinlock register 16

0x144 SPINLOCK17 Spinlock register 17

0x148 SPINLOCK18 Spinlock register 18

0x14c SPINLOCK19 Spinlock register 19

0x150 SPINLOCK20 Spinlock register 20

0x154 SPINLOCK21 Spinlock register 21

2.3. Processor subsystem

44

RP2040 Datasheet

Offset Name Info

0x158 SPINLOCK22 Spinlock register 22
0x15¢c SPINLOCK23 Spinlock register 23
0x160 SPINLOCK24 Spinlock register 24
0x164 SPINLOCK25 Spinlock register 25
0x168 SPINLOCK26 Spinlock register 26
0x16c SPINLOCK27 Spinlock register 27
0x170 SPINLOCK28 Spinlock register 28
0x174 SPINLOCK?29 Spinlock register 29
0x178 SPINLOCK30 Spinlock register 30
0x17c SPINLOCK31 Spinlock register 31

SI0: CPUID Register

Offset: 0x000

Description

Processor core identifier

Tab(e 17. CPUID Bits Description Type Reset
Register
31:0 Value is 0 when read from processor core 0, and 1 when read from processor | RO -
core 1.
SI0: GPIO_IN Register
Offset: 0x004
Description
Input value for GPIO pins
Tabl_e 18. GPIO_IN Bits Description Type Reset
Register
31:30 Reserved. - -
29:0 Input value for GPI00...29 RO 0x00000000
SI0: GPIO_HL_IN Register
Offset: 0x008
Description
Input value for QSPI pins
Tab{e 19. GPIOHLIN | Biye Description Type Reset
Register
31:6 Reserved. = =
5:0 Input value on QSPI 10 in order 0..5: SCLK, SSn, SDO, SD1, SD2, SD3 RO 0x00

SI0: GPIO_OUT Register

Offset: 0x010

2.3. Processor subsystem

45

RP2040 Datasheet
]

Description

GPIO output value

Tab{e 20. GPI0_0UT Bits Description Type Reset
Register
31:30 Reserved. - -
29:0 Set output level (1/0 — high/low) for GPI00...29. RW 0x00000000
Reading back gives the last value written, NOT the input value from the pins.
If core 0 and core 1 both write to GPIO_OUT simultaneously (or to a
SET/CLR/XOR alias),
the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.
SI10: GPIO_OUT_SET Register
Offset: 0x014
Description
GPIO output value set
Table 21. Bits Description Type Reset
GPIO_OUT_SET
Register 31:30 | Reserved. - -
29:0 Perform an atomic bit-set on GPIO_OUT, i.e. GPI0_OUT |= wdata RW 0x00000000
SI10: GPIO_OUT_CLR Register
Offset: 0x018
Description
GPIO output value clear
Table 22. o -
GPIO.OUT OLR Bits Description Type Reset
Register 31:30 | Reserved. - -
29:0 Perform an atomic bit-clear on GPIO_OUT, i.e. GPI0_OUT &= ~wdata RW 0x00000000
SI0: GPIO_OUT_XOR Register
Offset: 0x01c
Description
GPIO output value XOR
Table 23. o -
6PI0.OUT XOR Bits Description Type Reset
Register 31:30 | Reserved. - -
29:0 Perform an atomic bitwise XOR on GPIO_OUT, i.e. GPI0_OUT A= wdata RW 0x00000000

SIO: GPIO_OE Register
Offset: 0x020

Description

GPIO output enable

|
2.3. Processor subsystem 46

RP2040 Datasheet
]

Table 24. GPIO_OE
Register

Table 25.
GPIO_OE_SET Register

Table 26.
GPIO_OE_CLR Register

Table 27.
GPIO_OE_XOR
Register

Bits Description Type Reset
31:30 Reserved. - -
29:0 Set output enable (1/0 — output/input) for GP100...29. RW 0x00000000
Reading back gives the last value written.
If core 0 and core 1 both write to GPIO_OE simultaneously (or to a
SET/CLR/XOR alias),
the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.
SI10: GPIO_OE_SET Register
Offset: 0x024
Description
GPIO output enable set
Bits Description Type Reset
31:30 Reserved. - -
29:0 Perform an atomic bit-set on GPIO_OE, i.e. GPI0_0F |= wdata RW 0x00000000
SI10: GPIO_OE_CLR Register
Offset: 0x028
Description
GPIO output enable clear
Bits Description Type Reset
31:30 Reserved. - -
29:0 Perform an atomic bit-clear on GPIO_OE, i.e. GPI0_OE &= ~wdata RW 0x00000000
SI10: GPIO_OE_XOR Register
Offset: 0x02c
Description
GPI0 output enable XOR
Bits Description Type Reset
31:30 Reserved. - -
29:0 Perform an atomic bitwise XOR on GPIO_OE, i.e. GPI0_0E "= wdata RW 0x00000000

SI10: GPIO_HI_OUT Register
Offset: 0x030

Description

QSPI output value

2.3. Processor subsystem

a7

RP2040 Datasheet
]

Table 28.
GPIO_HI_OUT Register

Table 29.
GPIO_HI_OUT_SET
Register

Table 30.
GPIO_HI_OUT_CLR
Register

Table 31.
GPIO_HI_OUT_XOR
Register

Bits Description Type Reset
31:6 Reserved. = =
5:0 Set output level (1/0 — high/low) for QSPI'100...5. RW 0x00
Reading back gives the last value written, NOT the input value from the pins.
If core 0 and core 1 both write to GPIO_HI_OUT simultaneously (or to a
SET/CLR/XOR alias),
the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.
SI10: GPIO_HI_OUT_SET Register
Offset: 0x034
Description
QSPI output value set
Bits Description Type Reset
31:6 Reserved. - -
5:0 Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPI0O_HI_OUT |= wdata RW 0x00
SI10: GPIO_HI_OUT_CLR Register
Offset: 0x038
Description
QSPI output value clear
Bits Description Type Reset
31:6 Reserved. - -
5:0 Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPI0_HI_OUT &= ~wdata RW 0x00
SI10: GPIO_HI_OUT_XOR Register
Offset: 0x03c
Description
QSPI output value XOR
Bits Description Type Reset
31:6 Reserved. - -
5:0 Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPI0_HI_OUT A= wdata RW 0x00

S10: GPIO_HI_OE Register

Offset: 0x040

Description

QSPI output enable

2.3. Processor subsystem

48

RP2040 Datasheet
]

Tab"e 82.GPIO-HILOE | pipg Description Type Reset
Register
31:6 Reserved. - -
5:0 Set output enable (1/0 — output/input) for QSPI 100...5. RW 0x00
Reading back gives the last value written.
If core 0 and core 1 both write to GPIO_HI_OE simultaneously (or to a
SET/CLR/XOR alias),
the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.
SI10: GPIO_HI_OE_SET Register
Offset: 0x044
Description
QSPI output enable set
Table 33. Bits Description Type Reset
GPIO_HI_OE_SET
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-set on GPIO_HI_OE, i.e. GPI0_HI_OF |= wdata RW 0x00
SI10: GPIO_HI_OE_CLR Register
Offset: 0x048
Description
QSPI output enable clear
Table 34. Bits Description Type Reset
GPIO_HI_OE_CLR
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPI0_HI_OE &= ~wdata RW 0x00
SI10: GPIO_HI_OE_XOR Register
Offset: 0x04c
Description
QSPI output enable XOR
Table 35. Bits Description Type Reset
GPIO_HI_OE_XOR
Register 31:6 Reserved. - -
5:0 Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPI0_HI_OE "= wdata RW 0x00

SI10: FIFO_ST Register
Offset: 0x050

Description

Status register for inter-core FIFOs (mailboxes).

There is one FIFO in the core 0 — core 1 direction, and one core 1 — core 0. Both are 32 bits wide and 8 words
deep.

Core 0 can see the read side of the 1—0 FIFO (RX), and the write side of 0— 1 FIFO (TX).

Core 1 can see the read side of the 0— 1 FIFO (RX), and the write side of 1—0 FIFO (TX).

The SIO IRQ for each core is the logical OR of the VLD, WOF and ROE fields of its FIFO_ST register.

|
2.3. Processor subsystem 49

RP2040 Datasheet
]

Table 36. FIFO_ST

) Bits Name Description Type Reset
Register

31:4 Reserved. - - -

3 ROE Sticky flag indicating the RX FIFO was read when empty. | WC 0x0
This read was ignored by the FIFO.

2 WOF Sticky flag indicating the TX FIFO was written when full. WC 0x0
This write was ignored by the FIFO.

1 RDY Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_.WR | RO 0x1
is ready for more data)

0 VLD Value is 1 if this core’s RX FIFO is not empty (i.e. if RO 0x0
FIFO_RD is valid)

SIO: FIFO_WR Register

Offset: 0x054

Table 37. FIFO_WR

) Bits Description Type Reset
Register

31:0 Write access to this core’s TX FIFO WF 0x00000000

SIO: FIFO_RD Register

Offset: 0x058

Table 38. FIFO_RD Bits Description Type Resst
Register
31:0 Read access to this core’s RX FIFO RF -
SI0: SPINLOCK_ST Register
Offset: 0x05¢c
Table 39. Bits Description Type [
SPINLOCK_ST
Register 31:0 Spinlock state RO 0x00000000
A bitmap containing the state of all 32 spinlocks (1=locked).
Mainly intended for debugging.
SIO: DIV_UDIVIDEND Register
Offset: 0x060
Table 40. Bits Description Type Ress
DIV_UDIVIDEND
Register 31:0 Divider unsigned dividend RwW 0x00000000

Write to the DIVIDEND operand of the divider, i.e.thepinp / g.

Any operand write starts a new calculation. The results appear in QUOTIENT,
REMAINDER.

UDIVIDEND/SDIVIDEND are aliases of the same internal register. The U alias
starts an

unsigned calculation, and the S alias starts a signed calculation.

SIO: DIV_UDIVISOR Register

Offset: 0x064

|
2.3. Processor subsystem 50

RP2040 Datasheet

Table 41.

Bits Description Type Reset
DIV_UDIVISOR
Register 31:0 Divider unsigned divisor RW 0x00000000
Write to the DIVISOR operand of the divider, i.e. theqinp / q.
Any operand write starts a new calculation. The results appear in QUOTIENT,
REMAINDER.
UDIVIDEND/SDIVIDEND are aliases of the same internal register. The U alias
starts an
unsigned calculation, and the S alias starts a signed calculation.
SI0: DIV_SDIVIDEND Register
Offset: 0x068
Table 42. Bits Description Type Reset
DIV_SDIVIDEND
Register 31:0 Divider signed dividend RW 0x00000000
The same as UDIVIDEND, but starts a signed calculation, rather than unsigned.
SIO: DIV_SDIVISOR Register
Offset: 0x06¢c
Table 43. o -
DIV SDIVISOR Bits Description Type Reset
Register 31:0 Divider signed divisor RW 0x00000000
The same as UDIVISOR, but starts a signed calculation, rather than unsigned.
SI10: DIV_QUOTIENT Register
Offset: 0x070
Table 44 Bits Description Type Reset
DIV_QUOTIENT
Register 31:0 Divider result quotient RW 0x00000000

The result of DIVIDEND / DIVISOR (division). Contents undefined while
CSR_READY is low.

For signed calculations, QUOTIENT is negative when the signs of DIVIDEND
and DIVISOR differ.

This register can be written to directly, for context save/restore purposes. This
halts any

in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.
Reading from QUOTIENT clears the CSR_DIRTY flag, so should read results in
the order

REMAINDER, QUOTIENT if CSR_DIRTY is used.

SIO: DIV_REMAINDER Register

Offset: 0x074

2.3. Processor subsystem 51

RP2040 Datasheet

Table 45.
DIV_REMAINDER
Register

Table 46. DIV_CSR
Register

Table 47.
INTERPO_ACCUMO
Register

Table 48.
INTERPO_ACCUM1
Register

Bits Description Type Reset
31:0 Divider result remainder RW 0x00000000
The result of DIVIDEND % DIVISOR (modulo). Contents undefined while
CSR_READY is low.
For signed calculations, REMAINDER is negative only when DIVIDEND is
negative.
This register can be written to directly, for context save/restore purposes. This
halts any
in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.
SIO: DIV_CSR Register
Offset: 0x078
Description
Control and status register for divider.
Bits Name Description Type Reset
31:2 Reserved. = = =
1 DIRTY Changes to 1 when any register is written, and back to 0 RO 0x0
when QUOTIENT is read.
Software can use this flag to make save/restore more
efficient (skip if not DIRTY).
If the flag is used in this way, it's recommended to either
read QUOTIENT only,
or REMAINDER and then QUOTIENT, to prevent data loss
on context switch.
0 READY Reads as 0 when a calculation is in progress, 1 otherwise. | RO 0x1
Writing an operand (xDIVIDEND, xDIVISOR) will
immediately start a new calculation, no
matter if one is already in progress.
Writing to a result register will immediately terminate any
in-progress calculation
and set the READY and DIRTY flags.
SI10: INTERPO_ACCUMO Register
Offset: 0x080
Bits Description Type Reset
31:0 Read/write access to accumulator 0 RW 0x00000000
SIO: INTERPO_ACCUMT1 Register
Offset: 0x084
Bits Description Type Reset
31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERPO_BASEO Register

Offset:

0x088

2.3. Processor subsystem

52

RP2040 Datasheet
]

Table 49.
INTERPO_BASEQ
Register

Table 50.
INTERPO_BASET
Register

Table 51.
INTERPO_BASE2
Register

Table 52.
INTERPO_POP_LANEO
Register

Table 53.
INTERPO_POP_LANET
Register

Table 54.
INTERPO_POP_FULL
Register

Table 55.
INTERPO_PEEK_LANE
0 Register

Bits Description Type Reset
31:0 Read/write access to BASEOQ register. RW 0x00000000
SIO: INTERPO_BASET1 Register
Offset: 0x08¢c
Bits Description Type Reset
31:0 Read/write access to BASE1 register. RW 0x00000000
SIO: INTERPO_BASE?2 Register
Offset: 0x090
Bits Description Type Reset
31:0 Read/write access to BASE2 register. RW 0x00000000
SIO: INTERPO_POP_LANEO Register
Offset: 0x094
Bits Description Type Reset
31:0 Read LANEDO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_LANE1 Register
Offset: 0x098
Bits Description Type Reset
31:0 Read LANE1 result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_FULL Register
Offset: 0x09¢c
Bits Description Type Reset
31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERPO_PEEK_LANEO Register
Offset: 0x0a0
Bits Description Type Reset
31:0 Read LANEQ result, without altering any internal state (PEEK). RO 0x00000000

SI0: INTERPO_PEEK_LANE1 Register

Offset: 0x0a4

2.3. Processor subsystem

53

RP2040 Datasheet

Table 56.
INTERPO_PEEK_LANE
1 Register

Table 57.
INTERPO_PEEK_FULL
Register

Table 58.
INTERPO_CTRL_LANE
0 Register

Bits Description Type Reset
31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERPO_PEEK_FULL Register
Offset: 0x0a8
Bits Description Type Reset
31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERPO_CTRL_LANEO Register
Offset: 0x0ac
Description
Control register for lane 0
Bits Name Description Type Reset
31:26 Reserved. - - -
25 OVERF Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1 Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0
22 Reserved. = = =
21 BLEND Only present on INTERPO on each core. If BLEND mode is | RW 0x0
enabled:
- LANE1 result is a linear interpolation between BASEO and
BASET, controlled
by the 8 LSBs of lane 1 shift and mask value (a fractional
number between
0 and 255/256ths)
- LANEQO result does not have BASEO added (yields only
the 8 LSBs of lane 1 shift+mask value)
- FULL result does not have lane 1 shift+mask value added
(BASE2 + lane 0 shift+mask)
LANE1T SIGNED flag controls whether the interpolation is
signed or unsigned.
20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using
a lane to generate sequence
of pointers into flash or SRAM.
18 ADD_RAW If 1, mask + shift is bypassed for LANEOQ result. This does | RW 0x0
not affect FULL result.
17 CROSS_RESULT | If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s | RW 0x0

shift + mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT
mux is before the shift+mask bypass)

2.3. Processor subsystem

54

RP2040 Datasheet
]

Table 59.
INTERPO_CTRL_LANE
1 Register

Bits Name Description Type Reset
15 SIGNED If SIGNED is set, the shifted and masked accumulator RW 0x0
value is sign-extended to 32 bits
before adding to BASEO, and LANEQO PEEK/POP appear
extended to 32 bits when read by processor.
14:10 MASK_MSB The most-significant bit allowed to pass by the mask RW 0x00
(inclusive)
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB The least-significant bit allowed to pass by the mask RW 0x00
(inclusive)
4:0 SHIFT Logical right-shift applied to accumulator before masking | RW 0x00
SI0: INTERPO_CTRL_LANE1 Register
Offset: 0x0b0
Description
Control register for lane 1
Bits Name Description Type Reset
31:21 Reserved. = = =
20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using
a lane to generate sequence
of pointers into flash or SRAM.
18 ADD_RAW If 1, mask + shift is bypassed for LANE1 result. This does |RW 0x0
not affect FULL result.
17 CROSS_RESULT | If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s | RW 0x0
shift + mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT
mux is before the shift+mask bypass)
15 SIGNED If SIGNED is set, the shifted and masked accumulator RW 0x0
value is sign-extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear
extended to 32 bits when read by processor.
14:10 MASK_MSB The most-significant bit allowed to pass by the mask RW 0x00
(inclusive)
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB The least-significant bit allowed to pass by the mask RW 0x00
(inclusive)
4:0 SHIFT Logical right-shift applied to accumulator before masking | RW 0x00

SIO: INTERPO_ACCUMO_ADD Register

Offset: 0x0b4

2.3. Processor subsystem

55

RP2040 Datasheet
]

Table 60.
INTERPO_ACCUMO_AD
D Register

Table 61.
INTERPO_ACCUMT_AD
D Register

Table 62.
INTERPO_BASE_TAND
0 Register

Table 63.
INTERP1_ACCUMO
Register

Table 64.
INTERP1_ACCUM1
Register

Table 65.
INTERPT_BASEQ
Register

Bits Description Type Reset
31:24 |Reserved. = =
23:0 Values written here are atomically added to ACCUMO RW 0x000000
Reading yields lane 0’s raw shift and mask value (BASEO not added).
SI0: INTERPO_ACCUM1_ADD Register
Offset: 0x0b8
Bits Description Type Reset
31:24 | Reserved. = =
23:0 Values written here are atomically added to ACCUM1 RW 0x000000
Reading yields lane 1’s raw shift and mask value (BASE1 not added).
SI0: INTERPO_BASE_1ANDO Register
Offset: 0xObc
Bits Description Type Reset
31:0 On write, the lower 16 bits go to BASEOQ, upper bits to BASE1 simultaneously. | WO 0x00000000
Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.
SI0: INTERP1_ACCUMO Register
Offset: 0x0c0
Bits Description Type Reset
31:0 Read/write access to accumulator 0 RW 0x00000000
SI0: INTERP1_ACCUMT1 Register
Offset: 0x0c4
Bits Description Type Reset
31:0 Read/write access to accumulator 1 RW 0x00000000
SI0: INTERP1_BASEO Register
Offset: 0x0c8
Bits Description Type Reset
31:0 Read/write access to BASEOQ register. RW 0x00000000

SIO: INTERP1_BASET1 Register

Offset: 0xOcc

2.3. Processor subsystem

56

RP2040 Datasheet
]

Table 66.
INTERPT_BASET
Register

Table 67.
INTERP1_BASE2
Register

Table 68.
INTERP1_POP_LANEO
Register

Table 69.
INTERP1_POP_LANET
Register

Table 70.
INTERPT_POP_FULL
Register

Table 71.
INTERP1_PEEK_LANE
0 Register

Table 72.
INTERP1_PEEK_LANE
1 Register

Bits Description Type Reset
31:0 Read/write access to BASET register. RW 0x00000000
SIO: INTERP1_BASE2 Register
Offset: 0x0d0
Bits Description Type Reset
31:0 Read/write access to BASE2 register. RW 0x00000000
SIO: INTERP1_POP_LANEO Register
Offset: 0x0d4
Bits Description Type Reset
31:0 Read LANEDO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERP1_POP_LANE1 Register
Offset: 0x0d8
Bits Description Type Reset
31:0 Read LANE1 result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERP1_POP_FULL Register
Offset: 0x0dc
Bits Description Type Reset
31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERP1_PEEK_LANEO Register
Offset: 0x0e0
Bits Description Type Reset
31:0 Read LANEQ result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERP1_PEEK_LANE1 Register
Offset: 0x0e4
Bits Description Type Reset
31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_FULL Register

Offset: 0x0e8

2.3. Processor subsystem

57

RP2040 Datasheet
]

Table 73. Bits Description Type Reset
INTERP1_PEEK_FULL
Register 31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERP1_CTRL_LANEO Register
Offset: 0xOec
Description
Control register for lane 0
Table 74. Bits Name Description Type Reset
INTERP1_CTRL_LANE
0 Register 31:26 | Reserved. - - -
25 OVERF Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1 Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0
22 CLAMP Only present on INTERP1 on each core. If CLAMP mode is | RW 0x0
enabled:
- LANEQO result is shifted and masked ACCUMO, clamped
by a lower bound of
BASEQ and an upper bound of BASE1.
- Signedness of these comparisons is determined by
LANEO_CTRL_SIGNED
21 Reserved. = = =
20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using
a lane to generate sequence
of pointers into flash or SRAM.
18 ADD_RAW If 1, mask + shift is bypassed for LANEO result. This does | RW 0x0
not affect FULL result.
17 CROSS_RESULT | If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’'s | RW 0x0
shift + mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT
mux is before the shift+mask bypass)
15 SIGNED If SIGNED is set, the shifted and masked accumulator RW 0x0
value is sign-extended to 32 bits
before adding to BASEO, and LANEO PEEK/POP appear
extended to 32 bits when read by processor.
14:10 MASK_MSB The most-significant bit allowed to pass by the mask RW 0x00
(inclusive)
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB The least-significant bit allowed to pass by the mask RW 0x00
(inclusive)
4:0 SHIFT Logical right-shift applied to accumulator before masking | RW 0x00

SIO: INTERP1_CTRL_LANE1 Register

|
2.3. Processor subsystem 58

RP2040 Datasheet

Table 75.
INTERP1_CTRL_LANE
1 Register

Table 76.
INTERPT_ACCUMO_AD
D Register

|
2.3. Processor subsystem

Offset: 0x0f0

Description

Control register for lane 1

Bits Name Description Type Reset
31:21 Reserved. = = =
20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using
a lane to generate sequence
of pointers into flash or SRAM.
18 ADD_RAW If 1, mask + shift is bypassed for LANET result. This does | RW 0x0
not affect FULL result.
17 CROSS_RESULT | If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s | RW 0x0
shift + mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT
mux is before the shift+mask bypass)
15 SIGNED If SIGNED is set, the shifted and masked accumulator RW 0x0
value is sign-extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear
extended to 32 bits when read by processor.
14:10 MASK_MSB The most-significant bit allowed to pass by the mask RW 0x00
(inclusive)
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB The least-significant bit allowed to pass by the mask RW 0x00
(inclusive)
4:0 SHIFT Logical right-shift applied to accumulator before masking | RW 0x00
SI10: INTERP1_ACCUMO_ADD Register
Offset: 0x0f4
Bits Description Type Reset
31:24 Reserved. = =
23:0 Values written here are atomically added to ACCUMO RW 0x000000

Reading yields lane 0’s raw shift and mask value (BASEO not added).

SIO: INTERP1_ACCUM1_ADD Register

Offset: 0x0f8

RP2040 Datasheet

Table 77.
INTERP1_ACCUM1_AD
D Register

Table 78.
INTERP1_BASE_TAND
0 Register

Table 79. SPINLOCKO,
SPINLOCKT, ...,
SPINLOCK30,
SPINLOCK31
Registers

Table 80. Interrupts

Bits Description Type Reset
31:24 |Reserved. = =
23:0 Values written here are atomically added to ACCUM1 RW 0x000000
Reading yields lane 1’s raw shift and mask value (BASE1 not added).
SI0: INTERP1_BASE_1ANDO Register
Offset: 0x0fc
Bits Description Type Reset
31:0 On write, the lower 16 bits go to BASEQ, upper bits to BASE1 simultaneously. | WO 0x00000000

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

SI0: SPINLOCKO, SPINLOCKT, ..., SPINLOCK30, SPINLOCK31 Registers

Offsets: 0x100, 0x104, ..., 0x178, 0x17¢c

Bits

Description

Type

Reset

31:0

wins.

Reading from a spinlock address will:
- Return 0 if lock is already locked
- Otherwise return nonzero, and simultaneously claim the lock

Writing (any value) releases the lock.

The value returned on success is 0x1 << lock number.

If core 0 and core 1 attempt to claim the same lock simultaneously, core 0

RO

0x00000000

2.3.2. Interrupts

Each core is equipped with a standard ARM Nested Vectored Interrupt Controller (NVIC) which has 32 interrupt inputs.
Each NVIC has the same interrupts routed to it, with the exception of the GPIO interrupts: there is one GPIO interrupt per
bank, per core. These are completely independent, so e.g. core 0 can be interrupted by GPIO 0 in bank 0, and core 1 by
GPIO 1 in the same bank.

On RP2040, only the lower 26 IRQ signals are connected on the NVIC, and IRQs 26 to 31 are tied to zero (never firing).
The core can still be forced to enter the relevant interrupt handler by writing bits 26 to 31 in the NVIC ISPR register.

IRQ | Interrupt Source | IRQ | Interrupt Source | IRQ | Interrupt Source | IRQ | Interrupt Source |IRQ | Interrupt Source
0 TIMER_IRQ_O 6 XIP_IRQ 12 | DMA_IRQ_1 18 | SPIO_IRQ 24 | 1201_IRQ

1 TIMER_IRQ_1 7 PI00_IRQ_O 13 | I0_IRQ_BANKO 19 |[SPI1_IRQ 25 | RTC_IRQ

2 TIMER_IRQ_2 8 PI0@_IRQ_1 14 | 10_IRQ_QSPI 20 |UART@_IRQ

3 TIMER_IRQ_3 9 PI0OT_IRQ_0 15 | SI0_IRQ_PROCO 21 | UART1_IRQ

4 PWM_IRQ_WRAP 10 |PIOT_IRQ_1 16 | SI0_IRQ_PROCT 22 | ADC_IRQ_FIFO

5 USBCTRL_IRQ 11 |DMA_IRQ_0 17 | CLOCKS_IRQ 23 | 12C0_IRQ

Nested interrupts are supported in hardware: a lower-priority interrupt can be preempted by a higher-priority interrupt (or

another exception e.g. HardFault), and the lower-priority interrupt will resume once higher-priority exceptions have

completed. The priority order is determined by:

® First, the dynamic priority level configured per interrupt by the NVIC_IPRO-7 registers. The Cortex-M0+ implements

the two most significant bits of an 8-bit priority field, so four priority levels are available, and the numerically-lowest

|
2.3. Processor subsystem

60

RP2040 Datasheet
]

level (level 0) is the highest priority.

® Second, for interrupts with the same dynamic priority level, the lower-numbered IRQ has higher priority (using the
IRQ numbers given in the table above).

Some care has gone into arranging the RP2040 interrupt table to give a sensible default priority ordering, but individual
interrupts can be raised or lowered in priority, using NVIC_IPRO through NVIC_IPR7, to suit a particular use case.

The 26 system IRQ signals are masked (NMI mask) and then ORed together creating the NMI signal for the core. The
NMI mask for each core can be configured using PROCO_NMI_MASK and PROCT_NMI_MASK in the Syscfg register
block. Each of these registers has one bit for each system interrupt, and the each core’s NMI is asserted if a system
interrupt is asserted and the corresponding NMI mask bit is set for that core.

A CAUTION

If the watchdog is armed, and some bits are set on the core 1 NMI mask, the RESETS block (and hence Syscfg)
should be included in the watchdog reset list. Otherwise, following a watchdog event, core 1 NMI may be asserted
when the core enter the bootrom. It is safe for core 0 to take an NMI when entering the bootrom (the handler will
clear the NMI mask).

2.3.3. Event Signals

The Cortex-MO0+ can enter a sleep state until an "event" (or interrupt) takes place, using the WFE instruction. It can also
generate events, using the SEV instruction. On RP2040 the event signals are cross-wired between the two processors, so
that an event sent by one processor will be received on the other.

O NoOTE

the event flag is "sticky", so if both processors send an event (SEV) simultaneously, and then both go to sleep (WFE),
they will both wake immediately, rather than getting stuck in a sleep state.

While in a WFE (or WFI) sleep state, the processor can shut off its internal clock gates, consuming much less power. When
both processors are sleeping, and the DMA is inactive, RP2040 as a whole can enter a sleep state, disabling clocks on
unused infrastructure such as the busfabric, and waking automatically when one of the processors wakes. See Section
2.11.2.

2.3.4. Debug

The 2-wire Serial Wire Debug (SWD) port provides access to hardware and software debug features including:
® Loading firmware into SRAM or external flash memory
® Control of processor execution: run/halt, step, set breakpoints, other standard Arm debug functionality
® Access to processor architectural state
® Access to memory and memory-mapped IO via the system bus
The SWD bus is exposed on two dedicated pins and is immediately available after power-on.

Debug access is via independent DAPs (one per core) attached to a shared multidrop SWD bus (SWD v2). Each DAP will
only respond to debug commands if correctly addressed by a SWD TARGETSEL command; all others tristate their outputs.
Additionally, a Rescue DP (see Section 2.3.4.2) is available which is connected to system control features. Default
addresses of each debug port are given below:

® Core 0: 0x01002927
® Core 1:0x11002927
® Rescue DP: 0xf1002927

|
2.3. Processor subsystem 61

RP2040 Datasheet
]

Figure 10. RP2040
Debugging

The Instance IDs (top 4 bits of ID above) can be changed via a sysconfig register which may be useful in a multichip
application. However note that ID=0xf is reserved for the internal Rescue DP (see Section 2.3.4.2).

sys_cfg.proc0_dap_instid

]
l Processors
10
DAP_0
D= = Core0
D SWD DP-0 | AP
SwoLK >} [€—swo==» Multidrop
«—— SWDIO —»|)
E?] arbiter B DAP_1 CoreT
DP-1| AP
A [
SWD

|

pam_restart sys_cfg.procl_dap_instid

2.3.4.1. Software control of SWD pins

The SWD pins for Core 0 and Core 1 can be bit-banged via registers in syscfg (see DBGFORCE). This means that Core 1
could run a USB application that allows debug of Core 0, or similar.

2.3.4.2. Rescue DP

The Rescue DP (debug port) is available over the SWD bus and is only intended for use in the specific case where the
chip has locked up, for example if code has been programmed into flash which permanently halts the system clock: in
such a case, the normal debugger can not communicate with the processors to return the system to a working state, so
more drastic action is needed. A rescue is invoked by setting the CDBGPWRUPREQ bit in the Rescue DP’s CTRL/STAT
register.

This causes a hard reset of the chip (functionally similar to a power-on-reset), and sets a flag in the Chip Level Reset
block to indicate that a rescue reset took place. The bootrom checks this flag almost immediately in the initial boot
process (before watchdog, flash or USB boot), acknowledges by clearing the bit, then halts the processor. This leaves
the system in a safe state, with the system clock running, so that the debugger can reattach to the cores and load fresh
code.

For a practical example of using the Rescue DP, see the Hardware design with RP2040 book.

2.4. Cortex-MO+

ARM Documentation
Excerpted from the Cortex-M0+ Technical Reference Manual. Used with permission.

The ARM Cortex-MO+ processor is a very low gate count, highly energy efficient processor that is intended for
microcontroller and deeply embedded applications that require an area optimized, low-power processor.

2.4.1. Features

The ARM Cortex-M0+ processor features and benefits are:
® Tight integration of system peripherals reduces area and development costs.
® Thumb instruction set combines high code density with 32-bit performance.

® Support for single-cycle 1/0 access.

2.4. Cortex-MO+

62

https://developer.arm.com/documentation/dgi0012/d/Implementation/Debug-and-system-power-up
https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf
https://developer.arm.com/documentation/ddi0484/latest

RP2040 Datasheet
]

® Power control optimization of system components.

® Integrated sleep modes for low-power consumption.

® Fast code execution enables running the processor with a slower clock or increasing sleep mode time.
® Optimized code fetching for reduced flash and ROM power consumption.

® Hardware multiplier.

® Deterministic, high-performance interrupt handling for time-critical applications.

® Deterministic instruction cycle timing.

® Support for system level debug authentication.

® Serial Wire Debug reduces the number of pins required for debugging.

2.4.1.1. Interfaces

The interfaces included in the processor for external access include:
® External AHB-Lite interface to busfabric
® Debug Access Port (DAP)

* Single-cycle I/0 Port to SIO peripherals

2.4.1.2. Configuration

Each processor is configured with the following features:
® Architectural clock gating (for power saving)
¢ Little Endian bus access
® Four Breakpoints
® Debug support (via 2-wire debug pins SWD/SWCLK)
® 32-bit instruction fetch (to match 32-bit data bus)
® |OPORT (for low latency access to local peripherals (see SI0)
® 26 interrupts
® 8 MPU regions
® All registers reset on powerup
® Fast multiplier (MULS 32x32 single cycle)
® SysTick timer
® Vector Table Offset Register (VTOR)
® 34 WIC (Wake-up Interrupt Controller) lines (32 IRQ and NMI, RXEV)
® DAP feature: Halt event support
* DAP feature: SerialWire debug interface (protocol 2 with multidrop support)
® DAP feature: Micro Trace Buffer (MTB) is not implemented

Architectural clock gating allows the processor core to support SLEEP and DEEPSLEEP power states by disabling the
clock to parts of the processor core. Note that power gating is not supported.

Each MO+ core has its own interrupt controller which can individually mask out interrupt sources as required. The same
interrupts are routed to both M0+ cores.

|
2.4. Cortex-MO+ 63

RP2040 Datasheet
]

2.4.1.3. ARM architecture

The processor implements the ARMv6-M architecture profile. See the ARMv6-M Architecture Reference Manual, and for
further details refer to the ARM Cortex M0+ Technical Reference Manual.

2.4.2. Functional Description

2.4.2.1. Overview

The Cortex-MO+ processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and
includes an NVIC component. It also has hardware debug, single-cycle I/0 interfacing, and memory-protection
functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processors.

Figure 11 shows the functional blocks of the processor and surrounding blocks.

Figure 11. Cortex M0+
Functional block
diagram

Cortex-MO+ subsystem

AHB-Lite Master,

Clock

Single cycle 10 Port

Cortex M0+ Core 4—>| MPU |1—>|Bus Interface|

Reset

Breakpoint and Debugger
watchpoint unit interface

4 LY

Interrupts

Serial Wire Debug

wic DAP

2.4.2.2. Features

The MO+ features:
® The ARMv6-M Thumb® instruction set.
® Thumb-2 technology.
* An ARMv6-M compliant 24-bit SysTick timer.
® A 32-bit hardware multiplier. This is the standard single-cycle multiplier
* The ability to have deterministic, fixed-latency, interrupt handling.
® Load/store multiple instructions that can be abandoned and restarted to facilitate rapid interrupt handling.

e C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-
ABI) compliant exception model that enables the use of pure C functions as interrupt handlers.

® Low power sleep-mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from
interrupt sleep-on-exit feature.

2.4.2.3. NVIC features

The Nested Vectored Interrupt Controller (NVIC) features are:
® 26 external interrupt inputs, each with four levels of priority.
® Dedicated Non-Maskable Interrupt (NMI) input (which can be driven from any standard interrupt source)

® Support for both level-sensitive and pulse-sensitive interrupt lines.

|
2.4. Cortex-MO+ 64

https://static.docs.arm.com/ddi0419/d/DDI0419D_armv6m_arm.pdf
https://static.docs.arm.com/ddi0484/c/DDI0484C_cortex_m0p_r0p1_trm.pdf

RP2040 Datasheet

® Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.

® Relocatable vector table.

© NoTE

The NVIC supports hardware nesting of exceptions, e.g. an interrupt handler may itself be interrupted if a higher-
priority interrupt request arrives whilst the handler is running.

Further details available in Section 2.4.5.

2.4.2.4. Debug features

Debug features are:

® Four hardware breakpoints.

Two watchpoints.

Program Counter Sampling Register (PCSR) for non-intrusive code profiling.

Single step and vector catch capabilities.

Support for unlimited software breakpoints using BKPT instruction.

Non-intrusive access to core peripherals and zero-waitstate system slaves through a compact bus matrix. A
debugger can access these devices, including memory, even when the processor is running.

Full access to core registers when the processor is halted.

CoreSight compliant debug access through a Debug Access Port (DAP) supporting Serial Wire debug connections.

2.4.2.4.1. Debug Access Port

The processor is implemented with a low gate count Debug Access Port (DAP). The low gate count Debug Access Port
(DAP) provides a Serial Wire debug-port, and connects to the processor slave port to provide full system-level debug
access. For more information on DAP, see the ADI v5.1 version of the ARM Debug Interface v5, Architecture
Specification

2.4.2.5. MPU features

Memory Protection Unit (MPU) features are:
® Eight user-configurable memory regions.
® Eight sub-region disables per region.
® Execute never (XN) support.
* Default memory map support.

Further details available in Section 2.4.6.

2.4.2.6. AHB-Lite interface

Transactions on the AHB-Lite interface are always marked as non-sequential. Processor accesses and debug accesses
share the external interface to external AHB peripherals. The processor accesses take priority over debug accesses.
Any vendor-specific components can populate this bus.

|
2.4. Cortex-MO+ 65

RP2040 Datasheet

© NoTE

Instructions are only fetched using the AHB-Lite interface. To optimize performance, the Cortex-M0+ processor
fetches ahead of the instruction it is executing. To minimize power consumption, the fetch ahead is limited to a
maximum of 32 bits.

2.4.2.7. Single-cycle 1/0 port

The processor implements a single-cycle 1/0 port that provides high speed access to tightly-coupled peripherals, such
as general-purpose-1/0 (GPIO). The port is accessible both by loads and stores from either the processor or the
debugger. You cannot execute code from the 1/0 port.

2.4.2.8. Power Management Unit

Each processor has its own Power Management Unit (PMU) which allows power saving by turning off clocks to parts of
the processor core. There are no separate power domains on RP2040.

The PMU runs from the processor clock which is controlled from the chip level clocks block. The PMU can control the
following clock domains within the processor:

* A debug clock containing the processor debug resources and the rest of the DAP.
* A system clock containing the NVIC.
® A processor clock containing the core and associated interfaces
Control is limited to clock enable/disable. When enabled, all domains run at the same clock speed.

The PMU also interfaces with the WIC, to ensure that power-down and wake-up behaviours are transparent to software
and work with clocking and sleeping requirements. This includes SLEEP or DEEPSLEEP support as controlled in SCR
register.

2.4.2.8.1. Power Management

RP2040 ARM Cortex MO+ uses ARMv6-M which supports the use of Wait For Interrupt (WFI) and Wait For Event (WFE)
instructions as part of system power management:

WFI provides a mechanism for hardware support of entry to one or more sleep states. Hardware can suspend execution
until a wakeup event occurs.

WFE provides a mechanism for software to suspend program execution until a wakeup condition occurs with minimal or
no impact on wakeup latency. Both WFI and WFE are hint instructions that might have no effect on program execution.
Normally, they are used in software idle loops that resume program execution only after an interrupt or event of interest
occurs.

NOTE

Code using WFE and WFI must handle any spurious wakeup events caused by a debug halt or other reasons.

Refer to the SDK and ARMv6-M guide for further information.

2.4.2.8.2. Wait For Event and Send Event

RP2040 can support software-based synchronization to system events using the Send-Event (SEV) and WFE hint
instructions. Software can:

® use the WFE instruction to indicate that it is able to suspend execution of a process or thread until an event occurs,
permitting hardware to enter a low power state.

|
2.4. Cortex-MO+ 66

RP2040 Datasheet
]

* rely on a mechanism that is transparent to software and provides low latency wakeup.

The WFE mechanism relies on hardware and software working together to achieve energy saving. For example, stalling
execution of a processor until a device or another processor has set a flag:

® the hardware provides the mechanism to enter the WFE low-power state.
® software enters a polling loop to determine when the flag is set:
* the polling processor issues a WFE instruction as part of a polling loop if the flag is clear.
® an event is generated (hardware interrupt or Send-Event instruction from another processor) when the flag is set.
WFE wake up events
The following events are WFE wake up events:
* the execution of an SEV instruction on the other processor
® any exception entering the pending state if SEVONPEND in the System Control Register is set to 1.
® an asynchronous exception at a priority that preempts any currently active exceptions.
® adebug event with debug enabled.
The Event Register

The Event Register is a single bit register. When set, an Event Register indicates that an event has occurred, since the
register was last cleared, that might prevent the processor having to suspend operation on issuing a WFE instruction. The
following conditions apply to the Event Register:

® Areset clears the Event Register.
* Any WIFE wakeup event, or the execution of an exception return instruction, sets the Event Register.
® AVWFE instruction clears the Event Register.
® Software cannot read or write the value of the Event Register directly.
The Send-Event instruction

The Send-Event (SEV) instruction causes an event to be signalled to the other processor. The Send-Event instruction
generates a wakeup event.

The Wait For Event instruction
The action of the WFE instruction depends on the state of the Event Register:
* |f the Event Register is set, the instruction clears the register and returns immediately.

e |f the Event Register is clear the processor can suspend execution and enter a low-power state. It can remain in
that state until the processor detects a WFE wakeup event or a reset. When the processor detects a WFE wakeup
event, the WFE instruction completes.

WFE wakeup events can occur before a WFE instruction is issued. Software using the WFE mechanism must tolerate
spurious wake up events, including multiple wakeups.

2.4.2.8.3. Wait For Interrupt

RP2040 supports Wait For Interrupt through the hint instruction, WFI.

When a processor issues a WFI instruction it can suspend execution and enter a low-power state. It can remain in that
state until the processor detects one of the following WFI wake up events:

® Areset.

® An asynchronous exception at a priority that, if PRIMASK.PM was set to 0, would preempt any currently active
exceptions.

|
2.4. Cortex-MO+ 67

RP2040 Datasheet
]

Note

If PRIMASK.PM is set to 1, an asynchronous exception that has a higher group priority than any active exception
results in a WFI instruction exit. If the group priority of the exception is less than or equal to the execution group
priority, the exception is ignored.

¢ |f debug is enabled, a debug event.
® AVWFI wakeup event.
The WFI instruction completes when the hardware detects a WF| wake up event.

The processor recognizes WFI wake up events only after issuing the WFI instruction.

2.4.2.8.4. Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is used to wake the processor from a DEEPSLEEP state as controlled by the SCR
register. In a DEEPSLEEP state clocks to the processor core and NVIC are not running. It can take a few cycles to wake
from a DEEPSLEEP state.

The WIC takes inputs from the receive event signal (from the other processor), 32 interrupts lines, and NMI.

For more power saving, RP2040 supports system level power saving modes as defined in Section 2.11 which also
includes code examples.

2.4.2.9. Reset Control

The Cortex M0+ Reset Control block controls the following resets:
® Debug reset
® MO+ core reset
® PMU reset

After power up, both processors are released from reset (see details in Section 2.13.2). This releases reset to Debug,
MO0+ core and PMU.

Once running, resets can be triggered from the Debugger, NVIC (using AIRCR.SYSRESETREQ), or the RP2040 Power On State
Machine controller (see details in Section 2.13). The NVIC only resets the Cortex-M0+ processor core (not the Debug or
PMU), whereas the Power On State Machine controller can reset the processor subsystem which asserts all resets in
the subsystem (Debug, M0+ core, PMU).

2.4.3. Programmer’s model

2.4.3.1. About the programmer’s model

The ARMv6-M Architecture Reference Manual provides a complete description of the programmer’s model. This chapter
gives an overview of the Cortex-M0+ programmer’'s model that describes the implementation-defined options. It also
contains the ARMv6-M Thumb instructions it uses and their cycle counts for the processor. Additional details are in
following chapters

® Section 2.4.4 summarizes the system control features of the programmer’s model.
® Section 2.4.5 summarizes the NVIC features of the programmer’s model.

® Section 2.3.4 summarizes the Debug features of the programmer’s model.

|
2.4. Cortex-MO+ 68

RP2040 Datasheet
]

2.4.3.2. Modes of operation and execution

See the ARMv6-M Architecture Reference Manual for information about the modes of operation and execution.

2.4.3.3. Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number of 32-bit instructions that use
Thumb-2 technology. The ARMv6-M instruction set comprises:

® All of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT.
® The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 81 shows the Cortex-MO0+ instructions and their cycle counts. The cycle counts are based on a system with zero

wait-states.
Table B?' Cortex-MO+ Operation Description Assembler Cycles
instruction summary

Move 8-bit immediate MOVS Rd, #<imm> 1
Loto Lo MOVS Rd, Rm 1
Any to Any MOV Rd, Rm 1
Any to PC MOV PC, Rm 2

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1
All registers Lo ADDS Rd, Rn, Rm 1
Any to Any ADD Rd, Rd, Rm 1
Any to PC ADD PC, PC, Rm 2
8-bit immediate ADDS Rd, Rd, #<imm> 1
With carry ADCS Rd, Rd, Rm 1
Immediate to SP ADD SP, SP, #<imm> 1
Form address from SP ADD Rd, SP, #<imm> 1
Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1
3-bit immediate SUBS Rd, Rn, #<imm> 1
8-bit immediate SUBS Rd, Rd, #<imm> 1
With carry SBCS Rd, Rd, Rm 1
Immediate from SP SUB SP, SP, f#<imm> 1
Negate RSBS Rd, Rn, #0 1

Multiply Multiply MULS Rd, Rm, Rd 1

Compare Compare CMP Rn, Rm 1
Negative CMN Rn, Rm 1
Immediate CMP Rn, #<imm> 1

Logical AND ANDS Rd, Rd, Rm 1
Exclusive OR EORS Rd, Rd, Rm 1
OR ORRS Rd, Rd, Rm 1

2.4. Cortex-MO+

69

RP2040 Datasheet
]

Operation Description Assembler Cycles
Bit clear BICS Rd, Rd, Rm 1
Move NOT MVNS Rd, Rm 1
AND test TST Rn, Rm 1
Shift Logical shift left by immediate LSLS Rd, Rm, f#<shift> 1
Logical shift left by register LSLS Rd, Rd, Rs 1
Logical shift right by immediate LSRS Rd, Rm, #<shift> 1
Logical shift right by register LSRS Rd, Rd, Rs 1
Arithmetic shift right ASRS Rd, Rm, #<shift> 1
Arithmetic shift right by register ASRS Rd, Rd, Rs 1
Rotate Rotate right by register RORS Rd, Rd, Rs 1
Load Word, immediate offset LDR Rd, [Rn, fi<imm>] 2o0r1°
Halfword, immediate offset LDRH Rd, [Rn, #<imm>] 2or1°
Byte, immediate offset LDRB Rd, [Rn, #<imm>] 2o0r1°
Word, register offset LDR Rd, [Rn, Rm] 2or1°
Halfword, register offset LDRH Rd, [Rn, Rm] 2or12
Signed halfword, register offset LDRSH Rd, [Rn, Rm] 2o0r1°
Byte, register offset LDRB Rd, [Rn, Rm] 2o0r1°
Signed byte, register offset LDRSB Rd, [Rn, Rm] 2or12
PC-relative LDR Rd, <label> 2or1°
SP-relative LDR Rd, [SP, #<imm>] 2or1°
Multiple, excluding base LDM Rn!, {<loreglist>} T+NP
Multiple, including base LDM Rn, {<loreglist>} T+NP
Store Word, immediate offset STR Rd, [Rn, #<imm>] 2or1°
Halfword, immediate offset STRH Rd, [Rn, #<imm>] 2or1°
Byte, immediate offset STRB Rd, [Rn, #<imm>] 2or1?
Word, register offset STR Rd, [Rn, Rm] 2or12
Halfword, register offset STRH Rd, [Rn, Rm] 2o0r1°
Byte, register offset STRB Rd, [Rn, Rm] 2o0r1°
SP-relative STR Rd, [SP, f#<imm>] 2or1?
Multiple STM Rn!, {<loreglist>} T+NP
Push Push PUSH {<loreglist>} T+NP
Push with link register PUSH {<loreglist>, LR} T+Ne©
Pop Pop POP {<loreglist>} T+NP
Pop and return POP {<loreglist>, PC} 3+N°
Branch Conditional B<ce> <label> 1or2¢
Unconditional B <label> 2

2.4. Cortex-MO+

70

RP2040 Datasheet

Operation Description Assembler Cycles
With link BL <label> 3
With exchange BX Rm 2
With link and exchange BLX Rm 2
Extend Signed halfword to word SXTH Rd, Rm 1
Signed byte to word SXTB Rd, Rm 1
Unsigned halfword UXTH Rd, Rm 1
Unsigned byte UXTB Rd, Rm 1
Reverse Bytes in word REV Rd, Rm 1
Bytes in both halfwords REV16 Rd, Rm 1
Signed bottom half word REVSH Rd, Rm 1
State change Supervisor Call SVC #<imm> -
Disable interrupts CPSID i 1
Enable interrupts CPSIE 1 1
Read special register MRS Rd, <specreg> 3
Write special register MSR <specreg>, Rn 3
Breakpoint BKPT #t<imm> -
Hint Send-Event SEV 1
Wait For Event WFE 2f
Wait For Interrupt WFI 2f
Yield YIELD 1"
No operation NOP 1
Barriers Instruction synchronization ISB 3
Data memory DMB 3
Data synchronization DSB 3
Table Notes

22 if to AHB interface or SCS, 1 if to single-cycle 1/0 port.

® N is the number of elements in the list.

N is the number of elements in the list including PC or LR.

42 if taken, 1 if not-taken.

¢ Cycle count depends on processor and debug configuration.
f Excludes time spent waiting for an interrupt or event.
9 Executes as NOP.

See the ARMv6-M Architecture Reference Manual for more information about the ARMv6-M Thumb instructions.

2.4.3.4. Memory model

The processor contains a bus matrix that arbitrates the processor core and Debug Access Port (DAP) memory

accesses to both the external memory system and to the internal NVIC and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive as possible. For a zero

2.4. Cortex-MO+

71

RP2040 Datasheet
]

Table 82. M0+ Default
memory map usage

Table 83. M0+
processor core
register set summary

wait-state system, all debug accesses to system memory, NVIC, and debug resources are completely non-intrusive for
typical code execution.

The system memory map is ARMv6-M architecture compliant, and is common both to the debugger and processor
accesses. Transactions are routed as follows:

® All accesses below 0xd0000000 or above oxefffffff appear as AHB-Lite transactions on the AHB-Lite master port of
the processor.

® Accesses in the range 0xd0000000 to oxdfffffff are handled by the SIO.

® Accesses in the range 0xe0000000 to oxefffffff are handled within the processor and do not appear on the AHB-Lite
master port of the processor.

The processor supports only word size accesses in the range 0xd0000000 - 0xefffffff.

Table 82 shows the code, data, and device suitability for each region of the default memory map. This is the memory
map used by implementations when the MPU is disabled. The attributes and permissions of all regions, except that
targeting the Cortex-M0+ NVIC and debug components, can be modified using an implemented MPU.

Address range Code Data Device
0xf0000000 - Oxffffffff No No Yes
0xe0000000 - Oxefffffff No No No ®
0xab000000 - Oxdfffffff No No Yes
0x60000000 - Ox9fffffff Yes Yes No
0x40000000 - Ox5fffffff No No Yes
0x20000000 - Ox3fffffff Yes Yes No
0x00000000 - Ox1fffffff Yes Yes No

2. Space reserved for Cortex-M0+ NVIC and debug components.

Note

Regions not marked as suitable for code behave as eXecute-Never (XN) and generate a HardFault exception if code
attempts to execute from this location.

See the ARMv6-M Architecture Reference Manual for more information about the memory model.

2.4.3.5. Processor core registers summary

Table 83 shows the processor core register set summary. Each of these registers is 32 bits wide.

Name Description
RO-R12 R0-R12 are general-purpose registers for data operations.
MSP/PSP (R13) The Stack Pointer (SP) is register R13. In Thread mode,

the CONTROL register indicates the stack pointer to use,
Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

LR (R14) The Link Register (LR) is register R14. It stores the return
information for subroutines, function calls, and
exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the

current program address.

|
2.4. Cortex-MO+ 72

RP2040 Datasheet
]

Name Description

PSR The Program Status Register (PSR) combines:

® Application Program Status Register (APSR).
e |nterrupt Program Status Register (IPSR).

® Execution Program Status Register (EPSR).

These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of all
exceptions with configurable priority.

CONTROL The CONTROL register controls the stack used, the code
privilege level, when the processor is in Thread mode.

Note

See the ARMv6-M Architecture Reference Manual for information about the processor core registers and their
addresses, access types, and reset values.

2.4.3.6. Exceptions

This section describes the exception model of the processor.

2.4.3.6.1. Exception handling

The processor implements advanced exception and interrupt handling, as described in the ARMv6-M Architecture
Reference Manual. To minimize interrupt latency, the processor abandons any load-multiple or store-multiple instruction
to take any pending interrupt. On return from the interrupt handler, the processor restarts the load-multiple or store-
multiple instruction from the beginning.

This means that software must not use load-multiple or store-multiple instructions when a device is accessed in a
memory region that is read-sensitive or sensitive to repeated writes. The software must not use these instructions in
any case where repeated reads or writes might cause inconsistent results or unwanted side-effects.

The processor implementation can ensure that a fixed number of cycles are required for the NVIC to detect an interrupt
signal and the processor fetch the first instruction of the associated interrupt handler. If this is done, the highest priority
interrupt is jitter-free. This will depend on where the interrupt handler is located and if another higher priority master is
accessing that memory. SRAM4 and SRAMS5 are provided that may be allocated to interrupt handlers for each processor
so this is jitter-free.

To reduce interrupt latency and jitter, the Cortex-M0+ processor implements both interrupt late-arrival and interrupt tail-
chaining mechanisms, as defined by the ARMv6-M architecture. The worst case interrupt latency, for the highest priority
active interrupt in a zero wait-state system not using jitter suppression, is 15 cycles.

The processor exception model has the following implementation-defined behaviour in addition to the architecture
specified behaviour:

® Exceptions on stacking from HardFault to NMI lockup at NMI priority.

® Exceptions on unstacking from NMI to HardFault lockup at HardFault priority.

2.4.4. System control

|
2.4. Cortex-MO+ 73

RP2040 Datasheet
]

2.4.4.1. System control register summary

Table 84 gives the system control registers. Each of these registers is 32 bits wide.

Table 4. A'_"H System Name Description
control registers
SYST_CSR SysTick Control and Status Register
SYST_RVR SysTick Reload Value Register
SYST_CVR SysTick Current Value Register
SYST_CALIB SysTick Calibration value Register
CPUID See CPUID Register
ICSR Interrupt Control State Register
AIRCR Application Interrupt and Reset Control Register
CCR Configuration and Control Register
SHPR2 System Handler Priority Register
SHPR3 System Handler Priority Register
SHCSR System Handler Control and State Register
VTOR Vector table Offset Register
ACTLR Aucxiliary Control Register
Note

® All system control registers are only accessible using word transfers. Any attempt to read or write a halfword
or byte is Unpredictable.

® See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the system
control registers, and their addresses and access types, and reset values.

2.4.4.1.1. CPUID Register
The CPUID contains the part number, version, and implementation information that is specific to the processor.

© IMPORTANT

This standard internal Arm register contains information about the type of processor. It should not be confused with
CPUID (Section 2.3.1.1), an RP2040 SIO register which reads as 0 on core 0 and 1 on core 1.

2.4.5.NVIC

2.4.5.1. About the NVIC

External interrupt signals connect to the Nested Vectored Interrupt Controller (NVIC), and the NVIC prioritizes the
interrupts. Software can set the priority of each interrupt. The NVIC and the Cortex-MO+ processor core are closely
coupled, providing low latency interrupt processing and efficient processing of late arriving interrupts.

|
2.4. Cortex-MO+ 74

RP2040 Datasheet

O NoTE

"Nested" refers to the fact that interrupts can themselves be interrupted, by higher-priority interrupts. "Vectored"
refers to the hardware dispatching each interrupt to a distinct handler routine, specified by the vector table. Details
of nesting and vectoring behaviour are given in the ARMv6-M Architecture Reference Manual.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a halfword or byte individually
is unpredictable.

NVIC registers are always little-endian.

Processor exception handling is described in Exceptions section.

2.4.5.1.1. SysTick timer

A 24-bit SysTick system timer, extends the functionality of both the processor and the NVIC and provides:
® A 24-bit system timer (SysTick).
® Additional configurable priority SysTick interrupt.

The SysTick timer uses a Tps pulse as a clock enable. This is generated in the watchdog block as timer_tick. Accuracy
of SysTick timing depends upon accuracy of this timer_tick. The SysTick timer can also run from the system clock (see
SYST_CALIB).

See the ARMv6-M Architecture Reference Manual for more information.

2.4.5.1.2. Low power modes

The implementation includes a WIC. This enables the processor and NVIC to be put into a very low-power sleep mode
leaving the WIC to identify and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send Event (SEV)
instructions. In addition, the processor also supports the use of SLEEPONEXIT, that causes the processor core to enter
sleep mode when it returns from an exception handler to Thread mode. See the ARMv6-M Architecture Reference
Manual for more information.

2.4.5.2. NVIC register summary

Table 85 shows the NVIC registers. Each of these registers is 32 bits wide.

Tab_le 85. Mo+ Nvic Name Description

registers
NVIC_ISER Interrupt Set-Enable Register.
NVIC_ICER Interrupt Clear-Enable Register.
NVIC_ISPR Interrupt Set-Pending Register.
NVIC_ICPR Interrupt Clear-Pending Register.
NVIC_IPRO - NVIC_IPR7 Interrupt Priority Registers.

Note

See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the NVIC registers
and their addresses, access types, and reset values.

2.4. Cortex-MO+ 75

RP2040 Datasheet

2.4.6. MPU

2.4.6.1. About the MPU

The MPU is a component for memory protection which allows the processor to support the ARMv6 Protected Memory
System Architecture model. The MPU provides full support for:

® Eight unified protection regions.

® Overlapping protection regions, with ascending region priority:
o 7 = highest priority.
o 0 =lowest priority.

® Access permissions.

® Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the HardFault handler. See the ARMv6-M Architecture Reference
Manual for more information.

You can use the MPU to:
® Enforce privilege rules.
® Separate processes.

* Manage memory attributes.

2.4.6.2. MPU register summary

Table 86 shows the MPU registers. Each of these registers is 32 bits wide.

Table 86. M0+ MPU

i Name Description
registers
MPU_TYPE MPU Type Register.
MPU_CTRL MPU Control Register.
MPU_RNR MPU Region Number Register.
MPU_RBAR MPU Region Base Address Register.
MPU_RASR MPU Region Attribute and Size Register.
Note

® See the ARMv6-M Architecture Reference Manual for more information about the MPU registers and their
addresses, access types, and reset values.

* The MPU supports region sizes from 256-bytes to 4Gb, with 8-sub regions per region.

2.4.7. Debug

Basic debug functionality includes processor halt, single-step, processor core register access, Reset and HardFault
Vector Catch, unlimited software breakpoints, and full system memory access. See the ARMv6-M Architecture
Reference Manual.

The debug features for this device are:
® A breakpoint unit supporting 4 hardware breakpoints.

® A watchpoint unit supporting 2 watchpoints.

|
2.4. Cortex-MO+ 76

RP2040 Datasheet
]

Table 87. List of
MOPLUS registers

2.4.8. List of Registers

The ARM Cortex-MO0+ registers start at a base address of 8xe0000000 (defined as PPB_BASE in SDK).

Offset Name Info

0xe010 SYST_CSR SysTick Control and Status Register
0xe014 SYST_RVR SysTick Reload Value Register
0xe018 SYST_CVR SysTick Current Value Register
0xe01c SYST_CALIB SysTick Calibration Value Register
0xe100 NVIC_ISER Interrupt Set-Enable Register
0xe180 NVIC_ICER Interrupt Clear-Enable Register
0xe200 NVIC_ISPR Interrupt Set-Pending Register
0xe280 NVIC_ICPR Interrupt Clear-Pending Register
0xe400 NVIC_IPRO Interrupt Priority Register 0

0xe404 NVIC_IPR1 Interrupt Priority Register 1

0xe408 NVIC_IPR2 Interrupt Priority Register 2

0xe40c NVIC_IPR3 Interrupt Priority Register 3

0xe410 NVIC_IPR4 Interrupt Priority Register 4

Oxe414 NVIC_IPR5 Interrupt Priority Register 5

0xe418 NVIC_IPR6 Interrupt Priority Register 6

Oxed1c NVIC_IPR7 Interrupt Priority Register 7

0xed00 CPUID CPUID Base Register

Oxed04 ICSR Interrupt Control and State Register
0xed08 VTOR Vector Table Offset Register
OxedOc AIRCR Application Interrupt and Reset Control Register
Oxed10 SCR System Control Register

Oxed14 CCR Configuration and Control Register
Oxedl1c SHPR2 System Handler Priority Register 2
O0xed20 SHPR3 System Handler Priority Register 3
Oxed24 SHCSR System Handler Control and State Register
0xed90 MPU_TYPE MPU Type Register

0xed94 MPU_CTRL MPU Control Register

0xed98 MPU_RNR MPU Region Number Register
Oxed9c MPU_RBAR MPU Region Base Address Register
Oxeda0 MPU_RASR MPU Region Attribute and Size Register

MOPLUS: SYST_CSR Register

Offset: 0xe010

2.4. Cortex-MO+

7

RP2040 Datasheet

Description

Use the SysTick Control and Status Register to enable the SysTick features.

Table 88. SYST_CSR

) Bits Name Description Type Reset
Register

31:17 Reserved. - - -

16 COUNTFLAG Returns 1 if timer counted to 0 since last time this was RO 0x0
read. Clears on read by application or debugger.

15:3 Reserved. - - -

2 CLKSOURCE SysTick clock source. Always reads as one if SYST_CALIB | RW 0x0
reports NOREF.

Selects the SysTick timer clock source:
0 = External reference clock.

1 = Processor clock.

1 TICKINT Enables SysTick exception request: RW 0x0
0 = Counting down to zero does not assert the SysTick
exception request.

1 = Counting down to zero to asserts the SysTick
exception request.

0 ENABLE Enable SysTick counter: RW 0x0
0 = Counter disabled.
1 = Counter enabled.

MOPLUS: SYST_RVR Register
Offset: 0xe014

Description

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the
counter reaches 0. It can be any value between 0 and 0xO0FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0. The reset value of this
register is UNKNOWN.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example,
if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Table 89. SYST_RVR

) Bits Name Description Type Reset
Register

31:24 Reserved. - - -

23:0 RELOAD Value to load into the SysTick Current Value Register RW 0x000000
when the counter reaches 0.

MOPLUS: SYST_CVR Register
Offset: 0xe018

Description

Use the SysTick Current Value Register to find the current value in the register. The reset value of this register is
UNKNOWN.

2.4. Cortex-MO+ 78

RP2040 Datasheet
]

Table 90. SYST_CVR

) Bits Name Description Type Reset
Register

31:24 Reserved. - - -

23:0 CURRENT Reads return the current value of the SysTick counter. This | RW 0x000000
register is write-clear. Writing to it with any value clears
the register to 0. Clearing this register also clears the
COUNTFLAG bit of the SysTick Control and Status
Register.

MOPLUS: SYST_CALIB Register
Offset: 0xe01c

Description

Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and

multiply.
Tab"e 91. SYST.CALIB | Biss Name Description Type Reset
Register
31 NOREF If reads as 1, the Reference clock is not provided - the RO 0x0
CLKSOURCE bit of the SysTick Control and Status register
will be forced to 1 and cannot be cleared to 0.
30 SKEW If reads as 1, the calibration value for 10ms is inexact (due | RO 0x0

to clock frequency).

29:24 Reserved. - - -

23:0 TENMS An optional Reload value to be used for 10ms (100Hz) RO 0x000000
timing, subject to system clock skew errors. If the value
reads as 0, the calibration value is not known.

MOPLUS: NVIC_ISER Register
Offset: 0xe100

Description

Use the Interrupt Set-Enable Register to enable interrupts and determine which interrupts are currently enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,
asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,
regardless of its priority.

Table 92. NVIC_ISER

) Bits Name Description Type Reset
Register

31:0 SETENA Interrupt set-enable bits. RW 0x00000000
Write:

0 = No effect.

1 = Enable interrupt.
Read:

0 = Interrupt disabled.
1 = Interrupt enabled.

MOPLUS: NVIC_ICER Register
Offset: 0xe180

Description

Use the Interrupt Clear-Enable Registers to disable interrupts and determine which interrupts are currently enabled.

2.4. Cortex-MO+ 79

RP2040 Datasheet

Table 93. NVIC_ICER
Register

Bits Name Description Type Reset

31:0 CLRENA Interrupt clear-enable bits. RW 0x00000000
Write:

0 = No effect.

1 = Disable interrupt.
Read:

0 = Interrupt disabled.

1 = Interrupt enabled.

MOPLUS: NVIC_ISPR Register
Offset: 0xe200

Description

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are pending.

Table 94. NVIC_ISPR
Register

Bits

Name

Description

Type

Reset

31:0

SETPEND

Interrupt set-pending bits.

RW

0x00000000

Write:

0 = No effect.

1 = Changes interrupt state to pending.

Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

Note: Writing 1 to the NVIC_ISPR bit corresponding to:
An interrupt that is pending has no effect.

A disabled interrupt sets the state of that interrupt to
pending.

MOPLUS: NVIC_ICPR Register
Offset: 0xe280

Description

Use the Interrupt Clear-Pending Register to clear pending interrupts and determine which interrupts are currently
pending.

Table 95. NVIC_ICPR
Register

Bits Name Description Type Reset

31:0 CLRPEND Interrupt clear-pending bits. RW 0x00000000
Write:

0 = No effect.

1 = Removes pending state and interrupt.
Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

MOPLUS: NVIC_IPRO Register
Offset: 0xe400

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

These registers are only word-accessible

2.4. Cortex-MO+ 80

RP2040 Datasheet
]

Table 96. NVIC_IPRO

) Bits Name Description Type Reset
Register

31:30 IP_3 Priority of interrupt 3 RW 0x0

29:24 Reserved. - - -

23:22 IP_2 Priority of interrupt 2 RW 0x0

21:16 Reserved. - - -

1514 |IP_1 Priority of interrupt 1 RW 0x0

13:8 Reserved. - - _

7:6 IP_0 Priority of interrupt 0 RW 0x0

5:0 Reserved. - - -

MOPLUS: NVIC_IPR1 Register
Offset: Oxe404

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Table 97. NVIC_IPR1

) Bits Name Description Type Reset
Register

31:30 IP_7 Priority of interrupt 7 RW 0x0

29:24 Reserved. - - -

23:22 IP_6 Priority of interrupt 6 RW 0x0

21:16 Reserved. - - -

15:14 IP_5 Priority of interrupt 5 RW 0x0

13:8 Reserved. - - -

7:6 IP_4 Priority of interrupt 4 RW 0x0

5:0 Reserved. - - -

MOPLUS: NVIC_IPR2 Register
Offset: 0xe408

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Table 98. NVIC_IPR2

) Bits Name Description Type Reset
Register

31:30 IP_11 Priority of interrupt 11 RW 0x0

29:24 Reserved. - - -

23:22 IP_10 Priority of interrupt 10 RW 0x0

21:16 Reserved. - - -

1514 |IP_9 Priority of interrupt 9 RW 0x0

13:8 Reserved. - - -

|
2.4. Cortex-MO+ 81

RP2040 Datasheet
]

Bits Name Description Type Reset
7:6 IP_8 Priority of interrupt 8 RW 0x0
5:0 Reserved. = = =

MOPLUS: NVIC_IPR3 Register
Offset: Oxe40c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;Zzitzrg‘ NVIC_IPRS Bits Name Description Type Reset
31:30 IP_15 Priority of interrupt 15 RW 0x0
29:24 | Reserved. = = =
23:22 IP_14 Priority of interrupt 14 RW 0x0
21:16 Reserved. = = =
15:14 IP_13 Priority of interrupt 13 RW 0x0
13:8 Reserved. = = =
7:6 IP_12 Priority of interrupt 12 RW 0x0
5:0 Reserved. = = =

MOPLUS: NVIC_IPR4 Register
Offset: 0xe410

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;ZZ:;L?O‘ NVICIPR4 | Bitg Name Description Type Reset
31:30 IP_19 Priority of interrupt 19 RW 0x0
29:24 | Reserved. = = =
23:22 IP_18 Priority of interrupt 18 RW 0x0
21:16 Reserved. = = =
15:14 IP_17 Priority of interrupt 17 RW 0x0
13:8 Reserved. = = =
7:6 IP_16 Priority of interrupt 16 RW 0x0
5:0 Reserved. = = =

Offset: Oxe414

MOPLUS: NVIC_IPRS Register

2.4. Cortex-MO+

82

RP2040 Datasheet
]

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;:S::IT' NVICIPRS | Bitg Name Description Type Reset
31:30 IP_23 Priority of interrupt 23 RW 0x0
29:24 | Reserved. = = =
23:22 IP_22 Priority of interrupt 22 RW 0x0
21:16 Reserved. = = =
15114 IP_21 Priority of interrupt 21 RW 0x0
13:8 Reserved. = = =
7:6 IP_20 Priority of interrupt 20 RW 0x0
5:0 Reserved. = = =

MOPLUS: NVIC_IPR6 Register

Offset: 0xe418

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Table 102. NVIC_IPR6

Register Bits Name Description Type Reset
31:30 IP_27 Priority of interrupt 27 RW 0x0
29:24 | Reserved. = = =
23:22 IP_26 Priority of interrupt 26 RW 0x0
21:16 Reserved. = = =
15:14 IP_25 Priority of interrupt 25 RW 0x0
13:8 Reserved. = = =
7:6 IP_24 Priority of interrupt 24 RW 0x0
5:0 Reserved. = = =

MOPLUS: NVIC_IPR7 Register

Offset: Oxed1c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Tabl_e 103. NVIC_IPR7 | Bite Name Description Type Reset
Register
31:30 IP_31 Priority of interrupt 31 RW 0x0
29:24 Reserved. = = =
23:22 IP_30 Priority of interrupt 30 RW 0x0
21:16 Reserved. = = =

2.4. Cortex-MO+

83

RP2040 Datasheet

Bits Name Description Type Reset

1514 |IP_29 Priority of interrupt 29 RW 0x0

13:8 Reserved. - - -

7:6 IP_28 Priority of interrupt 28 RW 0x0

5:0 Reserved. - - -

MOPLUS: CPUID Register
Offset: Oxed00

Description

Read the CPU ID Base Register to determine: the ID number of the processor core, the version number of the
processor core, the implementation details of the processor core.

Table 104. CPUID

) Bits Name Description Type Reset
Register
31:24 IMPLEMENTER Implementor code: 0x41 = ARM RO 0x41
23:20 VARIANT Major revision number n in the rnpm revision status: RO 0x0
0x0 = Revision 0.
19:16 ARCHITECTURE | Constant that defines the architecture of the processor: RO Oxc
0xC = ARMv6-M architecture.
15:4 PARTNO Number of processor within family: 0xC60 = Cortex-M0+ | RO 0xc60
3:0 REVISION Minor revision number m in the rnpm revision status: RO 0x1
0x1 = Patch 1.
MOPLUS: ICSR Register
Offset: Oxed04
Description
Use the Interrupt Control State Register to set a pending Non-Maskable Interrupt (NMI), set or clear a pending
PendSV, set or clear a pending SysTick, check for pending exceptions, check the vector number of the highest
priority pended exception, check the vector number of the active exception.
Table 105. ICSR
Register

2.4. Cortex-MO+ 84

RP2040 Datasheet
]

Bits

Description

Type

Reset

31

NMIPENDSET

Setting this bit will activate an NMI. Since NMl is the
highest priority exception, it will activate as soon as it is
registered.

NMI set-pending bit.

Write:

0 = No effect.

1 = Changes NMI exception state to pending.

Read:

0 = NMI exception is not pending.

1 = NMI exception is pending.

Because NMl is the highest-priority exception, normally
the processor enters the NMI

exception handler as soon as it detects a write of 1 to this
bit. Entering the handler then clears

this bit to 0. This means a read of this bit by the NMI
exception handler returns 1 only if the

NMI signal is reasserted while the processor is executing
that handler.

RW

0x0

30:29

Reserved.

28

PENDSVSET

PendSV set-pending bit.

Write:

0 = No effect.

1 = Changes PendSV exception state to pending.
Read:

0 = PendSV exception is not pending.

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV
exception state to pending.

RW

0x0

27

PENDSVCLR

PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV
exception.

RW

0x0

26

PENDSTSET

SysTick exception set-pending bit.

Write:

0 = No effect.

1 = Changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending.

1 = SysTick exception is pending.

RW

0x0

25

PENDSTCLR

SysTick exception clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the SysTick
exception.

This bit is WO. On a register read its value is Unknown.

RW

0x0

24

Reserved.

2.4. Cortex-MO+

85

RP2040 Datasheet

Bits Name Description Type Reset
23 ISRPREEMPT The system can only access this bit when the core is RO 0x0
halted. It indicates that a pending interrupt is to be taken
in the next running cycle. If C_LMASKINTS is clear in the
Debug Halting Control and Status Register, the interrupt is
serviced.
22 ISRPENDING External interrupt pending flag RO 0x0
21 Reserved. - - -
20:12 VECTPENDING Indicates the exception number for the highest priority RO 0x000
pending exception: 0 = no pending exceptions. Non zero =
The pending state includes the effect of memory-mapped
enable and mask registers. It does not include the
PRIMASK special-purpose register qualifier.
11:9 Reserved. = = =
8:0 VECTACTIVE Active exception number field. Reset clears the RO 0x000
VECTACTIVE field.
MOPLUS: VTOR Register
Offset: Oxed08
Description
The VTOR holds the vector table offset address.
Tab{e 106. VIOR Bits Name Description Type Reset
Register
31:8 TBLOFF Bits [31:8] of the indicate the vector table offset address. | RW 0x000000
7:0 Reserved. - - -

MOPLUS: AIRCR Register

Offset: OxedOc

Description

Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state
information from debug halt mode, request a system reset.

Table 107. AIRCR Bits Name Description Type Reset
Register
31:16 VECTKEY Register key: RW 0x0000
Reads as Unknown
On writes, write 0x05FA to VECTKEY, otherwise the write
is ignored.
15 ENDIANESS Data endianness implemented: RO 0x0
0 = Little-endian.
14:3 Reserved. - = =

2.4. Cortex-MO+

86

RP2040 Datasheet
]

Bits Name Description Type Reset

2 SYSRESETREQ Writing 1 to this bit causes the SYSRESETREQ signal to RW 0x0
the outer system to be asserted to request a reset. The
intention is to force a large system reset of all major
components except for debug. The C_HALT bit in the
DHCSR is cleared as a result of the system reset
requested. The debugger does not lose contact with the
device.

1 VECTCLRACTIVE | Clears all active state information for fixed and RW 0x0
configurable exceptions. This bit: is self-clearing, can only
be set by the DAP when the core is halted. When set:
clears all active exception status of the processor, forces
areturn to Thread mode, forces an IPSR of 0. A debugger
must re-initialize the stack.

0 Reserved. - - -

MOPLUS: SCR Register
Offset: Oxed10

Description

System Control Register. Use the System Control Register for power-management functions: signal to the system
when the processor can enter a low power state, control how the processor enters and exits low power states.

Table 108. SCR

) Bits Name Description Type Reset
Register

31:5 Reserved. - - -

4 SEVONPEND Send Event on Pending bit: RW 0x0
0 = Only enabled interrupts or events can wakeup the
processor, disabled interrupts are excluded.

1 = Enabled events and all interrupts, including disabled
interrupts, can wakeup the processor.

When an event or interrupt becomes pending, the event
signal wakes up the processor from WFE. If the
processor is not waiting for an event, the event is
registered and affects the next WFE.

The processor also wakes up on execution of an SEV
instruction or an external event.

3 Reserved. - - -

2 SLEEPDEEP Controls whether the processor uses sleep or deep sleep |RW 0x0
as its low power mode:
0 = Sleep.

1 = Deep sleep.

1 SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode | RW 0x0
to Thread mode:

0 = Do not sleep when returning to Thread mode.

1 = Enter sleep, or deep sleep, on return from an ISR to
Thread mode.

Setting this bit to 1 enables an interrupt driven application
to avoid returning to an empty main application.

0 Reserved. - - -

|
2.4. Cortex-MO+ 87

RP2040 Datasheet

MOPLUS: CCR Register
Offset: Oxed14

Description

The Configuration and Control Register permanently enables stack alignment and causes unaligned accesses to
result in a Hard Fault.

Tabl.e 109. CCR Bits Name Description Type Reset
Register
31:10 Reserved. - - -
9 STKALIGN Always reads as one, indicates 8-byte stack alignment on | RO 0x0
exception entry. On exception entry, the processor uses
bit[9] of the stacked PSR to indicate the stack alignment.
On return from the exception it uses this stacked bit to
restore the correct stack alignment.
8:4 Reserved. - - -
3 UNALIGN_TRP Always reads as one, indicates that all unaligned accesses | RO 0x0
generate a HardFault.
2:0 Reserved. - - -

MOPLUS: SHPR2 Register
Offset: Oxed1c

Description

System handlers are a special class of exception handler that can have their priority set to any of the priority levels.
Use the System Handler Priority Register 2 to set the priority of SVCall.

Tab"e 110. SHPR2 Bits Name Description Type Reset
Register
31:30 PRI_11 Priority of system handler 11, SVCall RW 0x0
29:0 Reserved. = = =
MOPLUS: SHPR3 Register
Offset: Oxed20
Description
System handlers are a special class of exception handler that can have their priority set to any of the priority levels.
Use the System Handler Priority Register 3 to set the priority of PendSV and SysTick.
Tab{e 171, SHPRS Bits Name Description Type Reset
Register
31:30 PRI_15 Priority of system handler 15, SysTick RW 0x0
29:24 Reserved. = = =
23:22 PRI_14 Priority of system handler 14, PendSV RW 0x0
21:0 Reserved. = = =

MOPLUS: SHCSR Register

Offset: Oxed24

2.4. Cortex-MO+ 88

RP2040 Datasheet

Description

Use the System Handler Control and State Register to determine or clear the pending status of SVCall.

Table 112. SHCSR

) Bits Name Description Type Reset
Register

31:16 Reserved. - - -

15 SVCALLPENDED | Reads as 1 if SVCall is Pending. Write 1 to set pending RW 0x0
SVCall, write 0 to clear pending SVCall.

14:0 Reserved. - - -

MOPLUS: MPU_TYPE Register
Offset: Oxed90

Description

Read the MPU Type Register to determine if the processor implements an MPU, and how many regions the MPU
supports.

Table 113. MPU_TYPE

) Bits Name Description Type Reset
Register

31:24 Reserved. - - -

23:16 IREGION Instruction region. Reads as zero as ARMv6-M only RO 0x00
supports a unified MPU.

15:8 DREGION Number of regions supported by the MPU. RO 0x08
7:1 Reserved. - - -
0 SEPARATE Indicates support for separate instruction and data RO 0x0
address maps. Reads as 0 as ARMv6-M only supports a
unified MPU.

MOPLUS: MPU_CTRL Register
Offset: Oxed94

Description

Use the MPU Control Register to enable and disable the MPU, and to control whether the default memory map is
enabled as a background region for privileged accesses, and whether the MPU is enabled for HardFaults and NMls.

Table 114. MPU_CTRL

) Bits Name Description Type Reset
Register

31:3 Reserved. - - -

2 PRIVDEFENA Controls whether the default memory map is enabled as a | RW 0x0
background region for privileged accesses. This bit is
ignored when ENABLE is clear.

0 = If the MPU is enabled, disables use of the default
memory map. Any memory access to a location not
covered by any enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default
memory map as a background region for privileged
software accesses.

When enabled, the background region acts as if it is region
number -1. Any region that is defined and enabled has
priority over this default map.

2.4. Cortex-MO+ 89

RP2040 Datasheet

Bits Name Description Type Reset

1 HFNMIENA Controls the use of the MPU for HardFaults and NMls. RW 0x0
Setting this bit when ENABLE is clear results in
UNPREDICTABLE behaviour.

When the MPU is enabled:

0 = MPU is disabled during HardFault and NMI handlers,
regardless of the value of the ENABLE bit.

1 =the MPU is enabled during HardFault and NMI
handlers.

0 ENABLE Enables the MPU. If the MPU is disabled, privileged and RW 0x0
unprivileged accesses use the default memory map.
0 = MPU disabled.
1 =MPU enabled.

MOPLUS: MPU_RNR Register
Offset: Oxed98

Description

Use the MPU Region Number Register to select the region currently accessed by MPU_RBAR and MPU_RASR.

Table 115. MPU_RNR

) Bits Name Description Type Reset
Register

31:4 Reserved. - - -

3:0 REGION Indicates the MPU region referenced by the MPU_RBAR RW 0x0
and MPU_RASR registers.
The MPU supports 8 memory regions, so the permitted
values of this field are 0-7.

MOPLUS: MPU_RBAR Register
Offset: Oxed9c

Description

Read the MPU Region Base Address Register to determine the base address of the region identified by MPU_RNR.
Write to update the base address of said region or that of a specified region, with whose number MPU_RNR will also

be updated.
Tabl_e 116 MPURBAR | Biys Name Description Type Reset
Register
31:8 ADDR Base address of the region. RW 0x000000
7:5 Reserved. = = =

2.4. Cortex-MO+ 90

RP2040 Datasheet
]

Bits Name Description Type Reset

4 VALID On writes, indicates whether the write must update the RW 0x0
base address of the region identified by the REGION field,
updating the MPU_RNR to indicate this new region.

Write:

0 = MPU_RNR not changed, and the processor:

Updates the base address for the region specified in the
MPU_RNR.

Ignores the value of the REGION field.

1 = The processor:

Updates the value of the MPU_RNR to the value of the
REGION field.

Updates the base address for the region specified in the
REGION field.

Always reads as zero.

3:0 REGION On writes, specifies the number of the region whose base |RW 0x0
address to update provided VALID is set written as 1. On
reads, returns bits [3:0] of MPU_RNR.

MOPLUS: MPU_RASR Register
Offset: Oxeda0

Description

Use the MPU Region Attribute and Size Register to define the size, access behaviour and memory type of the region
identified by MPU_RNR, and enable that region.

Table 117. MPU_RASR

) Bits Name Description Type Reset
Register

31:16 ATTRS The MPU Region Attribute field. Use to define the region | RW 0x0000
attribute control.

28 = XN: Instruction access disable bit:
0 = Instruction fetches enabled.

1 = Instruction fetches disabled.

26:24 = AP: Access permission field
18 = S: Shareable bit

17 = C: Cacheable bit

16 = B: Bufferable bit

15:8 SRD Subregion Disable. For regions of 256 bytes or larger, each | RW 0x00
bit of this field controls whether one of the eight equal
subregions is enabled.

7:6 Reserved. = = =

5:1 SIZE Indicates the region size. Region size in bytes = RW 0x00
2*(SIZE+1). The minimum permitted value is 7 (b00111) =
256Bytes

0 ENABLE Enables the region. RW 0x0

2.5. DMA

The RP2040 Direct Memory Access (DMA) controller has separate read and write master connections to the bus fabric,
and performs bulk data transfers on a processor’s behalf. This leaves processors free to attend to other tasks, or enter
low-power sleep states. The data throughput of the DMA is also significantly higher than one of RP2040’s processors.

2.5.DMA 91

RP2040 Datasheet
]

Figure 12. DMA
Architecture Overview.
The read master can
read data from some
address every clock
cycle. Likewise, the
write master can write
to another address.
The address generator
produces matched
pairs of read and write
addresses, which the
masters consume
through the address
FIFOs. Up to 12
transfer sequences
may be in progress
simultaneously,
supervised by
software via the
control and status
registers.

AHB-lite Read
Master

! I

Transfer Data FIFO

! !

To AHB-lite
System Write Master

From

System <«— Read Address FIFO

AHB-lite
Slave Interface

Control/Status

Address Gererator = :
Registers

«— \Write Address FIFO

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12
independent channels, each which supervise a sequence of bus transfers, usually in one of the following scenarios:

* Memory-to-peripheral: a peripheral signals the DMA when it needs more data to transmit. The DMA reads data from
an array in RAM or flash, and writes to the peripheral’s data FIFO.

® Peripheral-to-memory: a peripheral signals the DMA when it has received data. The DMA reads this data from the
peripheral’s data FIFO, and writes it to an array in RAM.

* Memory-to-memory: the DMA transfers data between two buffers in RAM, as fast as possible.

Each channel has its own control and status registers (CSRs), with which software can program and monitor the
channel’s progress. When multiple channels are active at the same time, the DMA shares bandwidth evenly between the
channels, with round-robin over all channels which are currently requesting data transfers.

The transfer size can be either 32, 16, or 8 bits. This is configured once per channel: source transfer size and
destination transfer size are the same. The DMA performs standard byte lane replication on narrow writes, so byte data
is available in all 4 bytes of the databus, and halfword data in both halfwords.

Channels can be combined in varied ways for more sophisticated behaviour and greater autonomy. For example, one
channel can configure another, loading configuration data from a sequence of control blocks in memory, and the
second can then call back to the first via the CHAIN_T0 option, when it needs to be reconfigured.

Making the DMA more autonomous means that much less processor supervision is required: overall this allows the
system to do more at once, or to dissipate less power.

2.5.1. Configuring Channels

Each channel has four control/status registers:
® READ_ADDR is a pointer to the next address to be read from
® RITE_ADDR is a pointer to the next address to be written to

® TRANS_COUNT shows the number of transfers remaining in the current transfer sequence, and is used to program the
number of transfers in the next transfer sequence (see Section 2.5.1.2).

® CTRL is used to configure all other aspects of the channel’'s behaviour, to enable/disable it, and to check for
completion.

These are live registers: they update continuously as the channel progresses.

2.5.1.1. Read and Write Addresses

READ_ADDR and WRITE_ADDR contain the address the channel will next read from, and write to, respectively. These registers
update automatically after each read/write access. They increment by 1, 2 or 4 bytes at a time, depending on the
transfer size configured in CTRL.

Software should generally program these registers with new start addresses each time a new transfer sequence starts.
If READ_ADDR and WRITE_ADDR are not reprogrammed, the DMA will use the current values as start addresses for the next

2.5.DMA

92

RP2040 Datasheet
]

transfer. For example:

* |f the address does not increment (e.g. it is the address of a peripheral FIFO), and the next transfer sequence is
to/from that same address, there is no need to write to the register again.

* When transferring to/from a consecutive series of buffers in memory (e.g. scattering and gathering), an address
register will already have incremented to the start of the next buffer at the completion of a transfer.

By not programming all four CSRs for each transfer sequence, software can use shorter interrupt handlers, and more
compact control block formats when used with channel chaining (see register aliases in Section 2.5.2.1, chaining in
Section 2.5.2.2).

A CAUTION

READ_ADDR and WRITE_ADDR must always be aligned to the current transfer size, as specified in CTRL.DATA_SIZE. It is up to
software to ensure the initial values are correctly aligned.

2.5.1.2. Transfer Count

Reading from TRANS_COUNT yields the number of transfers remaining in the current transfer sequence. This value updates
continuously as the channel progresses. Writing to TRANS_COUNT sets the length of the next transfer sequence. Up to 2%%-1
transfers can be performed in one sequence.

Each time the channel starts a new transfer sequence, the most recent value written to TRANS_COUNT is copied to the live
transfer counter, which will then start to decrement again as the new transfer sequence makes progress. For debugging
purposes, the last value written can be read from the DBG_TCR (TRANS_COUNT reload value) register.

If the channel is triggered multiple times without intervening writes to TRANS_COUNT, it performs the same number of
transfers each time. For example, when chained to, one channel might load a fixed-size control block into another
channel’'s CSRs. TRANS_COUNT would be programmed once by software, and then reload automatically every time.

Alternatively, TRANS_COUNT can be written with a new value before starting each transfer sequence. If TRANS_COUNT is the
channel trigger (see Section 2.5.2.1), the channel will start immediately, and the value just written will be used, not the
value currently in the reload register.

© NoTE

the TRANS_COUNT is the number of transfers to be performed. The total number of bytes transferred is TRANS_COUNT times
the size of each transfer in bytes, given by CTRL.DATA_SIZE.

2.5.1.3. Control/Status

The CTRL register has more, smaller fields than the other 3 registers, and full details of these are given in the CTRL register
listings. Among other things, CTRL is used to:

® Configure the size of this channel’s data transfers, via CTRL.DATA_SIZE. Reads and writes are the same size.

Configure if and how READ_ADDR and WRITE_ADDR increment after each read or write, via CTRL.INCR_WRITE, CTRL.INCR_READ,
CTRL.RING_SEL, CTRL.RING_SIZE. Ring transfers are available, where one of the address pointers wraps at some power-
of-2 boundary.

Select another channel (or none) to be triggered when this channel completes, via CTRL.CHAIN_TO.

Select a peripheral data request (DREQ) signal to pace this channel’s transfers, via CTRL.TREQ_SEL.

See when the channel is idle, via CTRL.BUSY.

See if the channel has encountered a bus error, e.g. due to a faulty address being accessed, via CTRL.AHB_ERROR,
CTRL.READ_ERROR, or CTRL.WRITE_ERROR.

2.5.DMA 93

RP2040 Datasheet
]

Table 118. Control
register aliases. Each
channel has four
control/status
registers. Each
register can be
accessed at multiple
different addresses. In
each naturally-aligned
group of four, all four
registers appear, in
different orders.

2.5.DMA

2.5.2. Starting Channels

There are three ways to start a channel:
® Writing to a channel trigger register
® A chain trigger from another channel which has just completed, and has its CHAIN_T0 field configured
® The MULTI_CHAN_TRIGGER register, which can start multiple channels at once

Each of these covers different use cases. For example, trigger registers are simple and efficient when configuring and
starting a channel in an interrupt service routine, and CHAIN_TO allows one channel to callback to another channel,
which can then reconfigure the first channel.

O NoTE

Triggering a channel which is already running has no effect.

2.5.2.1. Aliases and Triggers

Offset +0x0 +0x4 +0x8 +0xC (Trigger)

0x00 (Alias 0) READ_ADDR WRITE_ADDR TRANS_COUNT CTRL_TRIG

0x10 (Alias 1) CTRL READ_ADDR WRITE_ADDR TRANS_COUNT_TRIG
0x20 (Alias 2) CTRL TRANS_COUNT READ_ADDR WRITE_ADDR_TRIG
0x30 (Alias 3) CTRL WRITE_ADDR TRANS_COUNT READ_ADD_TRIG

The four CSRs are aliased multiple times in memory. Each alias — of which there are four — exposes the same four
physical registers, but in a different order. The final register in each alias (at offset +ox¢, highlighted) is a trigger register.
Writing to the trigger register starts the channel.

Often, only alias 0 is used, and aliases 1-3 can be ignored. The channel is configured and started by writing READ_ADDR,
WRITE_ADDR, TRANS_COUNT and finally CTRL. Since CTRL is the trigger register in alias 0, this starts the channel.

The other aliases allow more compact control block lists when using one channel to configure another, and more
efficient reconfiguration and launch in interrupt handlers:

® Each CSRis a trigger register in one of the aliases:

o When gathering fixed-size buffers into a peripheral, the DMA channel can be configured and launched by
writing only READ_ADDR_TRIG.

o When scattering from a peripheral to fixed-size buffers, the channel can be configured and launched by
writing only WRITE_ADDR_TRIG.

® Useful combinations of registers appear as naturally-aligned tuples which contain a trigger register. In conjunction
with channel chaining and address wrapping, these implement compressed control block formats, e.qg.:

o (WRITE_ADDR, TRANS_COUNT_TRIG) for peripheral scatter operations
o (TRANS_COUNT, READ_ADDR_TRIG) for peripheral gather operations, or calculating CRCs on a list of buffers
o (READ_ADDR, WRITE_ADDR_TRIG) for manipulating fixed-size buffers in memory

Trigger registers do not start the channel if:

® The channel is disabled via CTRL.EN. (If the trigger is CTRL, the just-written value of EN is used, not the value currently
in the CTRL register.)

® The channel is already running

94

RP2040 Datasheet
]

® The value 0 is written to the trigger register. (This is useful for ending control block chains. See null triggers,
Section 2.5.2.3)

2.5.2.2. Chaining

When a channel completes, it can name a different channel to immediately be triggered. This can be used as a callback
for the second channel to reconfigure and restart the first.

This feature is configured through the CHAIN_TO field in the channel CTRL register. This 4-bit value selects a channel that
will start when this one finishes. A channel can not chain to itself. Setting CHAIN_T0 to a channel’'s own index means no
chaining will take place.

Chain triggers behave the same as triggers from other sources, such as trigger registers. For example, they cause
TRANS_COUNT to reload, and they are ignored if the targeted channel is already running.

One application for CHAIN_TO is for a channel to request reconfiguration by another channel, from a sequence of control
blocks in memory. Channel A is configured to perform a wrapped transfer from memory to channel B's control registers
(including a trigger register), and channel B is configured to chain back to channel A when it completes each transfer
sequence. This is shown more explicitly in the DMA control blocks example (Section 2.5.6.2).

Use of the register aliases (Section 2.5.2.1) enables compact formats for DMA control blocks: as little as one word in
some cases.

Another use of chaining is a "ping-pong" configuration, where two channels each trigger one another. The processor can
respond to the channel completion interrupts, and reconfigure each channel after it completes; however, the chained
channel, which has already been configured, starts immediately. In other words, channel configuration and channel
operation are pipelined. Performance can improve dramatically where many short transfer sequences are required.

The Section 2.5.6 goes into more detail on the possibilities of chain triggers, in the real world.

2.5.2.3. Null Triggers and Chain Interrupts
As mentioned in Section 2.5.2.1, writing all-zeroes to a trigger register does not start the channel. This is called a null
trigger, and it has two purposes:

® Cause a halt at the end of an array of control blocks, by appending an all-zeroes block

® Reduce the number of interrupts generated when control blocks are used

By default, a channel will generate an interrupt each time it finishes a transfer sequence, unless that channel’s IRQ is
masked in INTE@ or INTE1. The rate of interrupts can be excessive, particularly as processor attention is generally not
required while a sequence of control blocks are in progress; however, processor attention is required at the end of a
chain.

The channel CTRL register has a field called IRQ_QUIET. Its default value is 0. When this set to 1, channels generate an
interrupt when they receive a null trigger, and at no other time. The interrupt is generated by the channel which receives
the trigger.

2.5.3. Data Request (DREQ)

Peripherals produce or consume data at their own pace. If the DMA simply transferred data as fast as possible, loss or
corruption of data would ensue. DREQs are a communication channel between peripherals and the DMA, which enables
the DMA to pace transfers according to the needs of the peripheral.

The CTRL.TREQ_SEL (transfer request) field selects an external DREQ. It can also be used to select one of the internal
pacing timers, or select no TREQ at all (the transfer proceeds as fast as possible), e.g. for memory-to-memory transfers.

2.5.DMA 95

RP2040 Datasheet
]

Table 119. DREQs

Figure 13. DREQ
counting

2.5.3.1. System DREQ Table

There is a global assignment of DREQ numbers to peripheral DREQ channels.

DREQ | DREQ Channel |DREQ | DREQ Channel |DREQ | DREQ Channel |DREQ | DREQ Channel
0 DREQ_PI0@_TX0 |10 DREQ_PIO1_TX2 |20 DREQ_UARTO_TX |30 DREQ_PWM_WRAP6
1 DREQ_PI00_TX1 |11 DREQ_PI01_TX3 |21 DREQ_UART@_RX | 31 DREQ_PWM_WRAP7
2 DREQ_PI00_TX2 |12 DREQ_PIOT_RX@ |22 DREQ_UARTT_TX |32 DREQ_I2C0_TX

3 DREQ_PI00_TX3 |13 DREQ_PIOT_RX1 |23 DREQ_UARTT_RX |33 DREQ_I2C@_RX

4 DREQ_PIO@_RXe |14 DREQ_PIOT_RX2 |24 DREQ_PWM_WRAPO | 34 DREQ_I2C1_TX

5 DREQ_PI00_RX1 |15 DREQ_PIOT_RX3 |25 DREQ_PWM_WRAP1 | 35 DREQ_I2C1_RX

6 DREQ_PIO@_RX2 |16 DREQ_SPI0_TX 26 DREQ_PWM_WRAP2 | 36 DREQ_ADC

7 DREQ_PI0@_RX3 |17 DREQ_SPI0_RX 27 DREQ_PWM_WRAP3 | 37 DREQ_XIP_STREAM
8 DREQ_PI01_TX0 |18 DREQ_SPI1T_TX 28 DREQ_PWM_WRAP4 | 38 DREQ_XIP_SSITX
9 DREQ_PIO1_TX1 |19 DREQ_SPI1T_RX 29 DREQ_PWM_WRAP5 | 39 DREQ_XIP_SSIRX

2.5.3.2. Credit-based DREQ Scheme

The RP2040 DMA is designed for systems where:
® The area and power cost of large peripheral data FIFOs is prohibitive
* The bandwidth demands of individual peripherals may be high, e.g. >50% bus injection rate for short periods
® Bus latency is low, but multiple masters may be competing for bus access

In addition, the DMA's transfer FIFOs and dual-master structure permit multiple accesses to the same peripheral to be in
flight at once, to improve gross throughput. Choice of DREQ mechanism is therefore critical:

® The traditional "turn on the tap" method can cause overflow if multiple writes are backed up in the TDF. Some
systems solve this by overprovisioning peripheral FIFOs and setting the DREQ threshold below the full level, but
this wastes precious area and power

® The ARM-style single and burst handshake does not permit additional requests to be registered while the current
request is being served. This limits performance when FIFOs are very shallow.

The RP2040 DMA uses a credit-based DREQ mechanism. For each peripheral, the DMA attempts to keep as many
transfers in flight as the peripheral has capacity for. This enables full bus throughput (1 word per clock) through an 8-
deep peripheral FIFO with no possibility of overflow or underflow, in the absence of fabric latency or contention.

For each channel, the DMA maintains a counter. Each 1-clock pulse on the dreq signal will increment this counter
(saturating). When nonzero, the channel requests a transfer from the DMA’s internal arbiter, and the counter is
decremented when the transfer is issued to the address FIFOs. At this point the transfer is in flight, but has not yet
necessarily completed.

a LA LFLS LS LS LF LS Lf LS 1LY
dreq /_ \ /
chan count 0 1 X 0)) O
chan issue /_ \ /_

The effect is to upper bound the number of in-flight transfers based on the amount of room or data available in the
peripheral FIFO. In the steady state, this gives maximum throughput, but can't underflow or underflow.

One caveat is that the user must not access a FIFO which is currently being serviced by the DMA. This causes the

2.5.DMA

96

RP2040 Datasheet
]

channel and peripheral to become desynchronised, and can cause corruption or loss of data.

Another caveat is that multiple channels should not be connected to the same DREQ.

2.5.4. Interrupts
Each channel can generate interrupts; these can be masked on a per-channel basis using the INTE@ or INTE1 registers.
There are two circumstances where a channel raises an interrupt request:

® On the completion of each transfer sequence, if CTRL.IRQ_QUIET is disabled

® On receiving a null trigger, if CTRL.IRQ_QUIET is enabled

The masked interrupt status is visible in the INTS registers; there is one bit for each channel. Interrupts are cleared by
writing a bit mask to INTS. One idiom for acknowledging interrupts is to read INTS and then write the same value back,
so only enabled interrupts are cleared.

The RP2040 DMA provides two system IRQs, with independent masking and status registers (e.g. INTEQ, INTET). Any
combination of channel interrupt requests can be routed to either system IRQ. For example:

® Some channels can be given a higher priority in the system interrupt controller, if they have particularly tight timing
requirements

® In multiprocessor systems, different channel interrupts can be routed independently to different cores

For debugging purposes, the INTF registers can force either IRQ to be asserted.

2.5.5. Additional Features

2.5.5.1. Pacing Timers

These allow transfer of data roughly once every n clk_sys clocks instead of using external peripheral DREQ to trigger
transfers. A fractional (X/Y) divider is used, and will generate a maximum of 1 request per clk_sys cycle.

There are 4 timers available in RP2040. Each DMA is able to select any of these in CTRL.TREQ_SEL.

2.5.5.2. CRC Calculation

The DMA can watch data from a given channel passing through the data FIFO, and calculate checksums based on this
data. This a purely passive affair: the data is not altered by this hardware, only observed.

The feature is controlled via the SNIFF_CTRL and SNIFF_DATA registers, and can be enabled/disabled per DMA transfer via
the CTRL.SNIFF_EN field.

As this hardware cannot place backpressure on the FIFO, it must keep up with the DMA’s maximum transfer rate of 32
bits per clock.

The supported checksums are:

® CRC-32, MSB-first and LSB-first

® CRC-16-CCITT, MSB-first and LSB-first

® Simple summation (add to 32-bit accumulator)

® Even parity
The result register is both readable and writable, so that the initial seed value can be set.
Bit/byte manipulations are available on the result which may aid specific use cases:

® Bit inversion

2.5.DMA 97

RP2040 Datasheet
]

® Bit reversal
® Byte swap

These manipulations do not affect the CRC calculation, just how the data is presented in the result register.

2.5.5.3. Channel Abort

It is possible for a channel to get into an irrecoverable state: e.g. if commanded to transfer more data than a peripheral
will ever request, it will never complete. Clearing the CTRL.EN bit merely pauses the channel, and does not solve the
problem. This should not occur under normal circumstances, but it is important that there is a mechanism to recover
without simply hard-resetting the entire DMA block.

The CHAN_ABORT register forces channels to complete early. There is one bit for each channel, and writing a 1
terminates that channel. This clears the transfer counter and forces the channel into an inactive state.

O NoTE

Aborting a DMA channel does not cause assertion of its IRQ; abort does not count as a completion for IRQ purposes.

At the point where the corresponding CHAN_ABORT register bit is set high, a channel may have bus transfers currently
in flight between the read and write master, and these transfers cannot be revoked. Once set, a bit in CHAN_ABORT
stays high until these transfers complete, and the channel reaches a safe state, which generally takes only a few cycles.
The correct procedure is to write a bitmap into CHAN_ABORT of the channels you wish to terminate, and then poll the
register until it reads all-zeroes.

A CAUTION

Following an abort, the channel must not be restarted until the corresponding bit in CHAN_ABORT is once again
seen low. Starting the channel

2.5.5.4. Debug

Debug registers are available for each DMA channel to show the dreq counter DBG_CTDDREQ and next transfer count
DBG_TCR. These can also be used to reset a DMA channel if required.

2.5.6. Example Use Cases

2.5.6.1. Using Interrupts to Reconfigure a Channel

When a channel finishes a block of transfers, it becomes available for making more transfers. Software detects that the
channel is no longer busy, and reconfigures and restarts the channel. One approach is to poll the CTRL_BUSY bit until the
channel is done, but this loses one of the key advantages of the DMA, namely that it does not have to operate in
lockstep with a processor. By setting the correct bit in INTE@ or INTE1, we can instruct the DMA to raise one of its two
interrupt request lines when a given channel completes. Rather than repeatedly asking if a channel is done, we are told.

2.5.DMA 98

RP2040 Datasheet

© NoTE

Having two system interrupt lines allows different channel completion interrupts to be routed to different cores, or to
preempt one another on the same core if one channel is more time-critical.

When the interrupt is asserted, the processor can be configured to drop whatever it is doing and call a user-specified
handler function. The handler can reconfigure and restart the channel. When the handler exits, the processor returns to
the interrupted code running in the foreground.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/dma/channel_irq/channel_irg.c Lines 35 - 52

35 void dma_handler() {

36 static int pwm_level = 0;

37 static uint32_t wavetable[N_PWM_LEVELS];

38 static bool first_run = true;

39 // Entry number ‘i’ has ‘i’ one bits and (32 - i)' zero bits.

40 if (first_run) {

41 first_run = false;

42 for (int i = @; i < N_PWM_LEVELS; ++i)

43 wavetable[i] = ~(~Bu << i);

44 }

45

46 // Clear the interrupt request.

47 dma_hw->ints@ = 1u << dma_chan;

48 // Give the channel a new wave table entry to read from, and re-trigger it
49 dma_channel_set_read_addr(dma_chan, &wavetable[pwm_level], true);
50

51 pwm_level = (pwm_level + 1) % N_PWM_LEVELS;

52 }

In many cases, most of the configuration can be done the first time the channel is started, and only addresses and
transfer lengths need reprogramming in the DMA handler.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/dma/channel_irq/channel_irg.c Lines 54 - 94

54 int main() {
55 #ifndef PICO_DEFAULT_LED_PIN
56 #warning dma/channel_irq example requires a board with a regular LED

57 #else

58 // Set up a PIO state machine to serialise our bits

59 uint offset = pio_add_program(pio®, &pio_serialiser_program);

60 pio_serialiser_program_init(pio®, @, offset, PICO_DEFAULT_LED_PIN, PIO_SERIAL_CLKDIV);
61

62 // Configure a channel to write the same word (32 bits) repeatedly to PI0@
63 // SM@'s TX FIFO, paced by the data request signal from that peripheral.
64 dma_chan = dma_claim_unused_channel(true);

65 dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);

66 channel_config_set_transfer_data_size(&c, DMA_SIZE_32);

67 channel_config_set_read_increment(&c, false);

68 channel_config_set_dreq(&c, DREQ_PI00_TXO);

69

70 dma_channel_configure(

71 dma_chan,

72 &c,

73 &pioB_hw->txf[@], // Write address (only need to set this once)

74 NULL, // Don't provide a read address yet

75 PWM_REPEAT_COUNT, // Write the same value many times, then halt and interrupt
76 false // Don't start yet

77)3

78

I
2.5.DMA 99

https://github.com/raspberrypi/pico-examples/tree/master/dma/channel_irq/channel_irq.c#L35-L52
https://github.com/raspberrypi/pico-examples/tree/master/dma/channel_irq/channel_irq.c#L54-L94

RP2040 Datasheet
]

79 // Tell the DMA to raise IRQ line @ when the channel finishes a block

80 dma_channel_set_irqg@_enabled(dma_chan, true);

81

82 // Configure the processor to run dma_handler() when DMA IRQ 6 is asserted
83 irq_set_exclusive_handler (DMA_IRQ_O, dma_handler);

84 irq_set_enabled(DMA_IRQ_@, true);

85

86 // Manually call the handler once, to trigger the first transfer

87 dma_handler();

88

89 // Everything else from this point is interrupt-driven. The processor has
90 // time to sit and think about its early retirement -- maybe open a bakery?
91 while (true)

92 tight_loop_contents();

93 #endif

94 }

One disadvantage of this technique is that we don't start to reconfigure the channel until some time after the channel
makes its last transfer. If there is heavy interrupt activity on the processor, this may be quite a long time, and therefore
quite a large gap in transfers, which is problematic if we need to sustain a high data throughput.

This is solved by using two channels, with their CHAIN_T0 fields crossed over, so that channel A triggers channel B when it
completes, and vice versa. At any point in time, one of the channels is transferring data, and the other is either already
configured to start the next transfer immediately when the current one finishes, or it is in the process of being
reconfigured. When channel A completes, it immediately starts the cued-up transfer on channel B. At the same time, the
interrupt is fired, and the handler reconfigures channel A so that it is ready for when channel B completes.

2.5.6.2. DMA Control Blocks

Frequently, multiple smaller buffers must be gathered together and sent to the same peripheral. To address this use
case, the RP2040 DMA can execute a long and complex sequence of transfers without processor control. One channel
repeatedly reconfigures a second channel, and the second channel restarts the first each time it completes block of
transfers.

Because the first DMA channel is transferring data directly from memory to the second channel’s control registers, the
format of the control blocks in memory must match those registers. The last register written to, each time, will be one of
the trigger registers (Section 2.5.2.1) which will start the second channel on its programmed block of transfers. The
register aliases (Section 2.5.2.1) give some flexibility for the block layout, and more importantly allow some registers to
be omitted from the blocks, so they occupy less memory and can be loaded more quickly.

This example shows how multiple buffers can be gathered and transferred to the UART, by reprogramming TRANS_COUNT
and READ_ADDR_TRIG:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/dma/control_blocks/control_blocks.c Lines 1- 115

1 /**

2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

B =y

6

7 // Use two DMA channels to make a programmed sequence of data transfers to the
8 // UART (a data gather operation). One channel is responsible for transferring
9 // the actual data, the other repeatedly reprograms that channel.

10

11 #include <stdio.h>

12 #include "pico/stdlib.h"

13 #include "hardware/dma.h"

-0
N

#include "hardware/structs/uart.h"

5
(&

2.5.DMA 100

https://github.com/raspberrypi/pico-examples/tree/master/dma/control_blocks/control_blocks.c#L1-L115

RP2040 Datasheet

2.5.DMA

16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

// These buffers will be DMA'd to the UART, one after the other.

const char word@[] = "Transferring ";

const char word1[] = "one ";

const char word2[] = "word ";

const char word3[] = "at ";

const char word4[] = "a ";

const char word5[] = "time.\n";

// Note the order of the fields here: it's important that the length is before
// the read address, because the control channel is going to write to the last
// two registers in alias 3 on the data channel:

// +0x0 +0x4 +0x8 +0xC (Trigger)

// Alias 6: READ_ADDR WRITE_ADDR TRANS_COUNT CTRL

// Alias 1: CTRL READ_ADDR WRITE_ADDR TRANS_COUNT

// Alias 2: CTRL TRANS_COUNT READ_ADDR WRITE_ADDR

// Alias 3: CTRL WRITE_ADDR TRANS_COUNT READ_ADDR

//

// This will program the transfer count and read address of the data channel,
// and trigger it. Once the data channel completes, it will restart the

// control channel (via CHAIN_TO) to load the next two words into its control
// registers.

const struct {uint32_t len; const char *data;} control_blocks[] = {

b

{count_of(word@) - 1, word@}, // Skip null terminator
{count_of (word1) - 1, wordl},
{count_of(word2) - 1, word2},
{count_of (word3) - 1, word3},
{count_of(word4) - 1, word4},
{count_of (word5) - 1, word5},

{0, NULL} // Null trigger to end chain.

int main() {

#ifndef uart_default

#warning dma/control_blocks example requires a UART
#else

stdio_init_all();

puts("DMA control block example:");

// ctrl_chan loads control blocks into data_chan, which executes them.
int ctrl_chan = dma_claim_unused_channel(true);

int data_chan = dma_claim_unused_channel(true);

// The control channel transfers two words into the data channel's control
// registers, then halts. The write address wraps on a two-word

// (eight-byte) boundary, so that the control channel writes the same two
// registers when it is next triggered.

dma_channel_config ¢ = dma_channel_get_default_config(ctrl_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, true);

channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr

dma_channel_configure(
ctrl_chan,
&c,
&dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
&control_blocks[0], // Initial read address
2, // Halt after each control block
false // Don't start yet

101

RP2040 Datasheet

79

80 // The data channel is set up to write to the UART FIFO (paced by the

81 // UART's TX data request signal) and then chain to the control channel
82 // once it completes. The control channel programs a new read address and
83 // data length, and retriggers the data channel.

84

85 ¢ = dma_channel_get_default_config(data_chan);

86 channel_config_set_transfer_data_size(&c, DMA_SIZE_8);

87 channel_config_set_dreq(&c, DREQ_UARTO_TX + 2 * uart_get_index(uart_default));
88 // Trigger ctrl_chan when data_chan completes

89 channel_config_set_chain_to(&c, ctrl_chan);

90 // Raise the IRQ flag when @ is written to a trigger register (end of chain):
91 channel_config_set_irq_quiet(&c, true);

92

93 dma_channel_configure(

94 data_chan,

95 &c,

96 &uart_get_hw(uart_default)->dr,

97 NULL, // Initial read address and transfer count are unimportant;
98 0, // the control channel will reprogram them each time.
99 false // Don't start yet.

100 I

101

102 // Everything is ready to go. Tell the control channel to load the first
103 // control block. Everything is automatic from here.

104 dma_start_channel_mask(1u << ctrl_chan);

105

106 // The data channel will assert its IRQ flag when it gets a null trigger,
107 // indicating the end of the control block list. We're just going to wait
108 // for the IRQ flag instead of setting up an interrupt handler.

109 while (!(dma_hw->intr & 1u << data_chan))

110 tight_loop_contents();

111 dma_hw->ints® = 1u << data_chan;

112

113 puts("DMA finished.");

114 #endif

115 }

2.5.7. List of Registers

The DMA registers start at a base address of 0x50000000 (defined as DMA_BASE in SDK).

Table 120. List of

Offset Name Info
DMA registers

0x000 CHO_READ_ADDR DMA Channel 0 Read Address pointer

0x004 CHO_WRITE_ADDR DMA Channel 0 Write Address pointer

0x008 CHO_TRANS_COUNT DMA Channel 0 Transfer Count

0x00c CHO_CTRL_TRIG DMA Channel 0 Control and Status

0x010 CHO_AL1_CTRL Alias for channel 0 CTRL register

0x014 CHO_AL1_READ_ADDR Alias for channel 0 READ_ADDR register

0x018 CHO_ALT_WRITE_ADDR Alias for channel 0 WRITE_ADDR register

0x01c CHO_ALT_TRANS_COUNT_TRIG Alias for channel 0 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

2.5.DMA

102

RP2040 Datasheet

Offset

Name

Info

0x020

CHO_AL2_CTRL

Alias for channel 0 CTRL register

0x024

CHO_AL2_TRANS_COUNT

Alias for channel 0 TRANS_COUNT register

0x028

CHO_AL2_READ_ADDR

Alias for channel 0 READ_ADDR register

0x02c

CHO_AL2_WRITE_ADDR_TRIG

Alias for channel 0 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x030

CHO_AL3_CTRL

Alias for channel 0 CTRL register

0x034

CHO_AL3_WRITE_ADDR

Alias for channel 0 WRITE_ADDR register

0x038

CHO_AL3_TRANS_COUNT

Alias for channel 0 TRANS_COUNT register

0x03c

CHO_AL3_READ_ADDR_TRIG

Alias for channel 0 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x040

CH1_READ_ADDR

DMA Channel 1 Read Address pointer

0x044

CH1_WRITE_ADDR

DMA Channel 1 Write Address pointer

0x048

CH1_TRANS_COUNT

DMA Channel 1 Transfer Count

0x04c

CH1_CTRL_TRIG

DMA Channel 1 Control and Status

0x050

CH1_AL1_CTRL

Alias for channel 1 CTRL register

0x054

CH1_AL1_READ_ADDR

Alias for channel 1 READ_ADDR register

0x058

CH1_ALT_WRITE_ADDR

Alias for channel 1 WRITE_ADDR register

0x05c

CH1_ALT_TRANS_COUNT_TRIG

Alias for channel 1 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x060

CH1_AL2_CTRL

Alias for channel 1 CTRL register

0x064

CH1_AL2_TRANS_COUNT

Alias for channel 1 TRANS_COUNT register

0x068

CH1_AL2_READ_ADDR

Alias for channel 1 READ_ADDR register

0x06¢c

CH1_AL2_WRITE_ADDR_TRIG

Alias for channel 1 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x070

CH1_AL3_CTRL

Alias for channel 1 CTRL register

0x074

CH1_AL3_WRITE_ADDR

Alias for channel 1 WRITE_ADDR register

0x078

CH1_AL3_TRANS_COUNT

Alias for channel 1 TRANS_COUNT register

0x07c

CH1_AL3_READ_ADDR_TRIG

Alias for channel 1 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x080

CH2_READ_ADDR

DMA Channel 2 Read Address pointer

0x084

CH2_WRITE_ADDR

DMA Channel 2 Write Address pointer

0x088

CH2_TRANS_COUNT

DMA Channel 2 Transfer Count

0x08c

CH2_CTRL_TRIG

DMA Channel 2 Control and Status

0x090

CH2_AL1_CTRL

Alias for channel 2 CTRL register

2.5.DMA

103

RP2040 Datasheet

Offset

Name

Info

0x094

CH2_AL1_READ_ADDR

Alias for channel 2 READ_ADDR register

0x098

CH2_ALT1_WRITE_ADDR

Alias for channel 2 WRITE_ADDR register

0x09c

CH2_ALT1_TRANS_COUNT_TRIG

Alias for channel 2 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0a0

CH2_AL2_CTRL

Alias for channel 2 CTRL register

0x0a4

CH2_AL2_TRANS_COUNT

Alias for channel 2 TRANS_COUNT register

0x0a8

CH2_AL2_READ_ADDR

Alias for channel 2 READ_ADDR register

0x0ac

CH2_AL2_WRITE_ADDR_TRIG

Alias for channel 2 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0b0

CH2_AL3_CTRL

Alias for channel 2 CTRL register

0x0b4

CH2_AL3_WRITE_ADDR

Alias for channel 2 WRITE_ADDR register

0x0b8

CH2_AL3_TRANS_COUNT

Alias for channel 2 TRANS_COUNT register

0x0bc

CH2_AL3_READ_ADDR_TRIG

Alias for channel 2 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0c0

CH3_READ_ADDR

DMA Channel 3 Read Address pointer

0x0c4

CH3_WRITE_ADDR

DMA Channel 3 Write Address pointer

0x0c8

CH3_TRANS_COUNT

DMA Channel 3 Transfer Count

0x0cc

CH3_CTRL_TRIG

DMA Channel 3 Control and Status

0x0d0

CH3_AL1_CTRL

Alias for channel 3 CTRL register

0x0d4

CH3_AL1_READ_ADDR

Alias for channel 3 READ_ADDR register

0x0d8

CH3_ALT1_WRITE_ADDR

Alias for channel 3 WRITE_ADDR register

0x0dc

CH3_ALT_TRANS_COUNT_TRIG

Alias for channel 3 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0e0

CH3_AL2_CTRL

Alias for channel 3 CTRL register

0x0e4

CH3_AL2_TRANS_COUNT

Alias for channel 3 TRANS_COUNT register

0x0e8

CH3_AL2_READ_ADDR

Alias for channel 3 READ_ADDR register

0x0ec

CH3_AL2_WRITE_ADDR_TRIG

Alias for channel 3 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0f0

CH3_AL3_CTRL

Alias for channel 3 CTRL register

0x0f4

CH3_AL3_WRITE_ADDR

Alias for channel 3 WRITE_ADDR register

0x0f8

CH3_AL3_TRANS_COUNT

Alias for channel 3 TRANS_COUNT register

0x0fc

CH3_AL3_READ_ADDR_TRIG

Alias for channel 3 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x100

CH4_READ_ADDR

DMA Channel 4 Read Address pointer

2.5.DMA

104

RP2040 Datasheet

Offset

Name

Info

0x104

CH4_WRITE_ADDR

DMA Channel 4 Write Address pointer

0x108

CH4_TRANS_COUNT

DMA Channel 4 Transfer Count

0x10c

CH4_CTRL_TRIG

DMA Channel 4 Control and Status

0x110

CH4_AL1_CTRL

Alias for channel 4 CTRL register

0x114

CH4_AL1_READ_ADDR

Alias for channel 4 READ_ADDR register

0x118

CH4_ALT1_WRITE_ADDR

Alias for channel 4 WRITE_ADDR register

0x11c

CH4_ALT1_TRANS_COUNT_TRIG

Alias for channel 4 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x120

CH4_AL2_CTRL

Alias for channel 4 CTRL register

0x124

CH4_AL2_TRANS_COUNT

Alias for channel 4 TRANS_COUNT register

0x128

CH4_AL2_READ_ADDR

Alias for channel 4 READ_ADDR register

0x12c

CH4_AL2_WRITE_ADDR_TRIG

Alias for channel 4 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x130

CH4_AL3_CTRL

Alias for channel 4 CTRL register

0x134

CH4_AL3_WRITE_ADDR

Alias for channel 4 WRITE_ADDR register

0x138

CH4_AL3_TRANS_COUNT

Alias for channel 4 TRANS_COUNT register

0x13c

CH4_AL3_READ_ADDR_TRIG

Alias for channel 4 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x140

CHS5_READ_ADDR

DMA Channel 5 Read Address pointer

0x144

CHS5_WRITE_ADDR

DMA Channel 5 Write Address pointer

0x148

CHS5_TRANS_COUNT

DMA Channel 5 Transfer Count

0x14c

CH5_CTRL_TRIG

DMA Channel 5 Control and Status

0x150

CHS5_ALT_CTRL

Alias for channel 5 CTRL register

0x154

CHS5_ALT1_READ_ADDR

Alias for channel 5 READ_ADDR register

0x158

CHS5_ALT_WRITE_ADDR

Alias for channel 5 WRITE_ADDR register

0x15c

CHS5_ALT_TRANS_COUNT_TRIG

Alias for channel 5 TRANS_COUNT register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x160

CHS5_AL2_CTRL

Alias for channel 5 CTRL register

0x164

CHS5_AL2_TRANS_COUNT

Alias for channel 5 TRANS_COUNT register

0x168

CHS5_AL2_READ_ADDR

Alias for channel 5 READ_ADDR register

0x16¢

CHS5_AL2_WRITE_ADDR_TRIG

Alias for channel 5 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x170

CH5_AL3_CTRL

Alias for channel 5 CTRL register

0x174

CHS5_AL3_WRITE_ADDR

Alias for channel 5 WRITE_ADDR register

2.5.DMA

105

RP2040 Datasheet

Offset

Name

Info

0x178

CHS5_AL3_TRANS_COUNT

Alias for channel 5 TRANS_COUNT register

0x17¢

CHS5_AL3_READ_ADDR_TRIG

Alias for channel 5 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x180

CH6_READ_ADDR

DMA Channel 6 Read Address pointer

0x184

CH6_WRITE_ADDR

DMA Channel 6 Write Address pointer

0x188

CH6_TRANS_COUNT

DMA Channel 6 Transfer Count

0x18c

CH6_CTRL_TRIG

DMA Channel 6 Control and Status

0x190

CH6_AL1_CTRL

Alias for channel 6 CTRL register

0x194

CH6_AL1_READ_ADDR

Alias for channel 6 READ_ADDR register

0x198

CH6_ALT_WRITE_ADDR

Alias for channel 6 WRITE_ADDR register

0x19c

CH6_ALT_TRANS_COUNT_TRIG

Alias for channel 6 TRANS_COUNT register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0xT1a0

CH6_AL2_CTRL

Alias for channel 6 CTRL register

OxT1a4

CH6_AL2_TRANS_COUNT

Alias for channel 6 TRANS_COUNT register

O0x1a8

CH6_AL2_READ_ADDR

Alias for channel 6 READ_ADDR register

Ox1ac

CH6_AL2_WRITE_ADDR_TRIG

Alias for channel 6 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1b0

CH6_AL3_CTRL

Alias for channel 6 CTRL register

0x1b4

CH6_AL3_WRITE_ADDR

Alias for channel 6 WRITE_ADDR register

0x1b8

CH6_AL3_TRANS_COUNT

Alias for channel 6 TRANS_COUNT register

0x1bc

CH6_AL3_READ_ADDR_TRIG

Alias for channel 6 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1c0

CH7_READ_ADDR

DMA Channel 7 Read Address pointer

Ox1c4

CH7_WRITE_ADDR

DMA Channel 7 Write Address pointer

0x1c8

CH7_TRANS_COUNT

DMA Channel 7 Transfer Count

OxTcc

CH7_CTRL_TRIG

DMA Channel 7 Control and Status

0x1d0

CH7_AL1_CTRL

Alias for channel 7 CTRL register

Ox1d4

CH7_AL1_READ_ADDR

Alias for channel 7 READ_ADDR register

0x1d8

CH7_AL1_WRITE_ADDR

Alias for channel 7 WRITE_ADDR register

Ox1dc

CH7_ALT1_TRANS_COUNT_TRIG

Alias for channel 7 TRANS_COUNT register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1e0

CH7_AL2_CTRL

Alias for channel 7 CTRL register

OxT1e4

CH7_AL2_TRANS_COUNT

Alias for channel 7 TRANS_COUNT register

Ox1e8

CH7_AL2_READ_ADDR

Alias for channel 7 READ_ADDR register

2.5.DMA

106

RP2040 Datasheet
]

2.5.DMA

Offset Name Info

Oxlec CH7_AL2_WRITE_ADDR_TRIG Alias for channel 7 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1f0 CH7_AL3_CTRL Alias for channel 7 CTRL register

0x1f4 CH7_AL3_WRITE_ADDR Alias for channel 7 WRITE_ADDR register

0x1f8 CH7_AL3_TRANS_COUNT Alias for channel 7 TRANS_COUNT register

Ox1fc CH7_AL3_READ_ADDR_TRIG Alias for channel 7 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x200 CH8_READ_ADDR DMA Channel 8 Read Address pointer

0x204 CH8_WRITE_ADDR DMA Channel 8 Write Address pointer

0x208 CH8_TRANS_COUNT DMA Channel 8 Transfer Count

0x20c CH8_CTRL_TRIG DMA Channel 8 Control and Status

0x210 CH8_AL1_CTRL Alias for channel 8 CTRL register

0x214 CH8_AL1_READ_ADDR Alias for channel 8 READ_ADDR register

0x218 CH8_ALT1_WRITE_ADDR Alias for channel 8 WRITE_ADDR register

0x21c CH8_ALT_TRANS_COUNT_TRIG Alias for channel 8 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x220 CH8_AL2_CTRL Alias for channel 8 CTRL register

0x224 CH8_AL2_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x228 CH8_AL2_READ_ADDR Alias for channel 8 READ_ADDR register

0x22c CH8_AL2_WRITE_ADDR_TRIG Alias for channel 8 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x230 CH8_AL3_CTRL Alias for channel 8 CTRL register

0x234 CH8_AL3_WRITE_ADDR Alias for channel 8 WRITE_ADDR register

0x238 CH8_AL3_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x23c CH8_AL3_READ_ADDR_TRIG Alias for channel 8 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x240 CH9_READ_ADDR DMA Channel 9 Read Address pointer

0x244 CH9_WRITE_ADDR DMA Channel 9 Write Address pointer

0x248 CH9_TRANS_COUNT DMA Channel 9 Transfer Count

0x24c CH9_CTRL_TRIG DMA Channel 9 Control and Status

0x250 CH9_AL1_CTRL Alias for channel 9 CTRL register

0x254 CH9_AL1_READ_ADDR Alias for channel 9 READ_ADDR register

0x258 CH9_ALT1_WRITE_ADDR Alias for channel 9 WRITE_ADDR register

107

RP2040 Datasheet

Offset

Name

Info

0x25c

CH9_ALT_TRANS_COUNT_TRIG

Alias for channel 9 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x260

CH9_AL2_CTRL

Alias for channel 9 CTRL register

0x264

CH9_AL2_TRANS_COUNT

Alias for channel 9 TRANS_COUNT register

0x268

CH9_AL2_READ_ADDR

Alias for channel 9 READ_ADDR register

0x26c

CH9_AL2_WRITE_ADDR_TRIG

Alias for channel 9 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x270

CH9_AL3_CTRL

Alias for channel 9 CTRL register

0x274

CH9_AL3_WRITE_ADDR

Alias for channel 9 WRITE_ADDR register

0x278

CH9_AL3_TRANS_COUNT

Alias for channel 9 TRANS_COUNT register

0x27c

CH9_AL3_READ_ADDR_TRIG

Alias for channel 9 READ_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x280

CH10_READ_ADDR

DMA Channel 10 Read Address pointer

0x284

CH10_WRITE_ADDR

DMA Channel 10 Write Address pointer

0x288

CHT10_TRANS_COUNT

DMA Channel 10 Transfer Count

0x28c

CH10_CTRL_TRIG

DMA Channel 10 Control and Status

0x290

CH10_AL1_CTRL

Alias for channel 10 CTRL register

0x294

CH10_AL1_READ_ADDR

Alias for channel 10 READ_ADDR register

0x298

CHTO0_AL1_WRITE_ADDR

Alias for channel 10 WRITE_ADDR register

0x29c

CH10_ALT_TRANS_COUNT_TRIG

Alias for channel 10 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2a0

CH10_AL2_CTRL

Alias for channel 10 CTRL register

0x2a4

CH10_AL2_TRANS_COUNT

Alias for channel 10 TRANS_COUNT register

0x2a8

CH10_AL2_READ_ADDR

Alias for channel 10 READ_ADDR register

0x2ac

CH10_AL2_WRITE_ADDR_TRIG

Alias for channel 10 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2b0

CHTO0_AL3_CTRL

Alias for channel 10 CTRL register

0x2b4

CH10_AL3_WRITE_ADDR

Alias for channel 10 WRITE_ADDR register

0x2b8

CH10_AL3_TRANS_COUNT

Alias for channel 10 TRANS_COUNT register

0x2bc

CH10_AL3_READ_ADDR_TRIG

Alias for channel 10 READ_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2c0

CH11_READ_ADDR

DMA Channel 11 Read Address pointer

0x2c4

CH11_WRITE_ADDR

DMA Channel 11 Write Address pointer

0x2c8

CH11_TRANS_COUNT

DMA Channel 11 Transfer Count

2.5.DMA

108

RP2040 Datasheet

Offset Name Info

0x2cc CH11_CTRL_TRIG DMA Channel 11 Control and Status

0x2d0 CH11_AL1_CTRL Alias for channel 11 CTRL register

0x2d4 CH11_AL1_READ_ADDR Alias for channel 11 READ_ADDR register

0x2d8 CH11_AL1_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2dc CH11_AL1_TRANS_COUNT_TRIG Alias for channel 11 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2e0 CH11_AL2_CTRL Alias for channel 11 CTRL register

0x2e4 CH11_AL2_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2e8 CH11_AL2_READ_ADDR Alias for channel 11 READ_ADDR register

0x2ec CH11_AL2_WRITE_ADDR_TRIG Alias for channel 11 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2f0 CH11_AL3_CTRL Alias for channel 11 CTRL register

0x2f4 CH11_AL3_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2f8 CH11_AL3_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2fc CH11_AL3_READ_ADDR_TRIG Alias for channel 11 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x400 INTR Interrupt Status (raw)

0x404 INTEO Interrupt Enables for IRQ 0

0x408 INTFO Force Interrupts

0x40c INTSO Interrupt Status for IRQ 0

0x414 INTE1 Interrupt Enables for IRQ 1

0x418 INTF1 Force Interrupts for IRQ 1

0x41c INTS1 Interrupt Status (masked) for IRQ 1

0x420 TIMERO Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x424 TIMER1 Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x428 TIMER2 Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

2.5.DMA

109

RP2040 Datasheet
]

Offset Name Info

0x42c TIMER3 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x430 MULTI_CHAN_TRIGGER Trigger one or more channels simultaneously

0x434 SNIFF_CTRL Sniffer Control

0x438 SNIFF_DATA Data accumulator for sniff hardware

0x440 FIFO_LEVELS Debug RAF, WAF, TDF levels

0x444 CHAN_ABORT Abort an in-progress transfer sequence on one or more channels
0x448 N_CHANNELS The number of channels this DMA instance is equipped with.

This DMA supports up to 16 hardware channels, but can be
configured with as few as one, to minimise silicon area.

0x800 CHO_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x804 CHO_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x840 CH1_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x844 CH1_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x880 CH2_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x884 CH2_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x8c0 CH3_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x8c4 CH3_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x900 CH4_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x904 CH4_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

2.5.DMA 110

RP2040 Datasheet

Offset Name Info

0x940 CH5_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x944 CH5_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x980 CH6_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x984 CH6_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x9c0 CH7_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x9c4 CH7_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa00 CH8_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0xa04 CH8_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa40 CH9_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

Oxad4 CH9_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa80 CH10_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0xa84 CH10_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

Oxac0 CH11_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

Oxac4 CH11_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

DMA: CHO_READ_ADDR, CH1_READ_ADDR, .., CH10_READ_ADDR,
CH11_READ_ADDR Registers

Offsets: 0x000, 0x040, ..., 0x280, 0x2c0

2.5.DMA 111

RP2040 Datasheet
]

Description

DMA Channel N Read Address pointer

Table 121. Bits Description Type Reset
CHO_READ_ADDR,
CHI_READADDR, .., | 3.0 This register updates automatically each time a read completes. The current | RW 0x00000000

CHT0_READ_ADDR,

CH11_READADDR value is the next address to be read by this channel.

Registers
DMA: CHO_WRITE_ADDR, CH1_WRITE_ADDR, .., CH10_WRITE_ADDR,
CH11_WRITE_ADDR Registers
Offsets: 0x004, 0x044, ..., 0x284, 0x2c4
Description
DMA Channel N Write Address pointer
Table 122. Bits Description Type Reset
CHO_WRITE_ADDR,
EZ;BW;;TI?EAZ?;‘" 31:0 This register updates automatically each time a write completes. The current | RW 0x00000000
CHITWRITEADDR value is the next address to be written by this channel.
Registers
DMA: CHO_TRANS_COUNT, CH1_TRANS_COUNT, .., CH10_TRANS_COUNT,
CH11_TRANS_COUNT Registers
Offsets: 0x008, 0x048, ..., 0x288, 0x2c8
Description
DMA Channel N Transfer Count
Table 123. Bits Description Type Reset
CHO_TRANS_COUNT,
CHI_TRANS.COUNT, | 31:0 Program the number of bus transfers a channel will perform before halting. RW 0x00000000
E:’-ITO_TRANS_COUNT, Note that, if transfers are larger than one byte in size, this is not equal to the
CH11_TRANS_COUNT number of bytes transferred (see CTRL_DATA_SIZE).
Registers
When the channel is active, reading this register shows the number of
transfers remaining, updating automatically each time a write transfer
completes.
Writing this register sets the RELOAD value for the transfer counter. Each time
this channel is triggered, the RELOAD value is copied into the live transfer
counter. The channel can be started multiple times, and will perform the same
number of transfers each time, as programmed by most recent write.
The RELOAD value can be observed at CHx_DBG_TCR. If TRANS_COUNT is
used as a trigger, the written value is used immediately as the length of the
new transfer sequence, as well as being written to RELOAD.
DMA: CHO_CTRL_TRIG Registers
Offsets: 0x00c
Description
DMA Channel N Control and Status
Table 124,
CHO_CTRL_TRIG
Registers

2.5.DMA 112

RP2040 Datasheet
]

Bits Name Description Type Reset

31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

30 READ_ERROR If 1, the channel received a read bus error. Write one to WC 0x0
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

29 WRITE_ERROR If 1, the channel received a write bus error. Write one to WC 0x0
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

28:25 Reserved. - - -

24 BUSY This flag goes high when the channel starts a new transfer | RO 0x0
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

23 SNIFF_EN If 1, this channel’s data transfers are visible to the sniff RW 0x0
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

22 BSWAP Apply byte-swap transformation to DMA data. RW 0x0
For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

21 IRQ_QUIET In QUIET mode, the channel does not generate IRQs at the | RW 0x0
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

2.5.DMA 113

RP2040 Datasheet

Bits

Description

Type

Reset

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (so CHAIN_TO
disabled by default).

RW

0x0

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don’t wrap. For values n
> 0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

INCR_WRITE

If 1, the write address increments with each transfer. If O,
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

RW

0x0

INCR_READ

If 1, the read address increments with each transfer. If 0,
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

RW

0x0

3:2

DATA_SIZE

Set the size of each bus transfer (byte/halfword/word).
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

RW

0x0

2.5.DMA

114

RP2040 Datasheet
]

Table 125.
CHO_ALT_CTRL,
CH1_AL1_CTRL, ...,
CH10_AL1_CTRL,
CH11_AL1_CTRL
Registers

Table 126.
CHO_ALT_READ_ADDR

CHT_ALT_READ_ADDR

CHT0_AL1_READ_ADD
R
CH11_AL1_READ_ADD
R Registers

Table 127.
CHO_ALT_WRITE_ADD
R
CH1_ALT_WRITE_LADD
R ..
CHT0_ALT_WRITE_LAD
DR,
CHT1_ALT_WRITE_AD
DR Registers

2.5.DMA

Bits

Description

Type

Reset

HIGH_PRIORITY

HIGH_PRIORITY gives a channel preferential treatment in
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

RW

0x0

EN

DMA Channel Enable.

When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

RW

0x0

DMA: CHO_AL1_CTRL, CH1_AL1_CTRL, .., CH10_AL1_CTRL, CH11_AL1_CTRL
Registers

Offsets: 0x010, 0x050, ..., 0x290, 0x2d0

Bits Description Type Reset
31:0 Alias for channel N CTRL register RO -
DMA: CHO_AL1_READ_ADDR, CH1_AL1_READ_ADDR,

CH10_AL1_READ_ADDR, CH11_AL1_READ_ADDR Registers

Offsets: 0x014, 0x054, ..., 0x294, 0x2d4

eeey

Bits Description Type Reset
31:0 Alias for channel N READ_ADDR register RO -
DMA: CHO_AL1_WRITE_ADDR, CH1_AL1_WRITE_ADDR,

CH10_AL1_WRITE_ADDR, CH11_AL1_WRITE_ADDR Registers

Offsets: 0x018, 0x058, ..., 0x298, 0x2d8

eeey

Bits

Description

Type

Reset

31:0

Alias for channel N WRITE_ADDR register

RO

DMA: CHO_AL1_TRANS_COUNT_TRIG, CH1_AL1_TRANS_COUNT_TRIG,

eeey

CH10_AL1_TRANS_COUNT_TRIG, CH11_AL1_TRANS_COUNT_TRIG Registers

Offsets: 0x01c, 0x05c, ..., 0x29¢, 0x2dc

115

RP2040 Datasheet

Table 128.
CHO_ALT_TRANS_COU
NT_TRIG,
CH1_AL1_TRANS_COU
NT_TRIG, ..,
CHT0_AL1_TRANS_CO
UNT_TRIG,
CH11_AL1_TRANS_CO
UNT_TRIG Registers

Table 129.
CHO_AL2_CTRL,
CH1_AL2_CTRL, ..,
CH10_AL2_CTRL,
CH11_AL2_CTRL
Registers

Table 130.
CHO_AL2_TRANS_COU
NT,
CH1_AL2_TRANS_COU
NT, ..,
CH10_AL2_TRANS_CO
UNT,
CH11_AL2_TRANS_CO
UNT Registers

Table 131.
CHO_AL2_READ_ADDR

CH1_AL2_READ_ADDR

CHT0_AL2_READ_ADD
R
CH11_AL2_READ_ADD
R Registers

Table 132.
CHO_AL2_WRITE_ADD
R_TRIG,
CH1_AL2_WRITE_LADD
R_TRIG, ..,
CHT0_AL2_WRITE_AD
DR_TRIG,
CHT1_AL2_WRITE_AD
DR_TRIG Registers

Table 133.
CHO_AL3_CTRL,
CH1_AL3_CTRL, ..,
CH10_AL3_CTRL,
CH11_AL3_CTRL
Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RO

This is a trigger register (0Oxc). Writing a nonzero value will

reload the channel counter and start the channel.

DMA: CHO_AL2_CTRL, CH1_AL2_CTRL, .., CH10_AL2_CTRL, CH11_AL2_CTRL
Registers

Offsets: 0x020, 0x060, ..., 0x2a0, 0x2e0

Bits Description Type Reset
31:0 Alias for channel N CTRL register RO
DMA: CHO_AL2_TRANS_COUNT, CH1_AL2_TRANS_COUNT, .

CH10_AL2_TRANS_COUNT, CH11_AL2_TRANS_COUNT Registers

Offsets: 0x024, 0x064, ..., 0x2a4, 0x2e4

Bits Description Type Reset
31:0 Alias for channel N TRANS_COUNT register RO
DMA: CHO_AL2_READ_ADDR, CH1_AL2_READ_ADDR, vy
CH10_AL2_READ_ADDR, CH11_AL2_READ_ADDR Registers
Offsets: 0x028, 0x068, ..., 0x2a8, 0x2e8
Bits Description Type Reset
31:0 Alias for channel N READ_ADDR register RO
DMA: CHO_AL2_WRITE_ADDR_TRIG, CH1_AL2_WRITE_ADDR_TRIG, ..,

CH10_AL2_WRITE_ADDR_TRIG, CH11_AL2_WRITE_ADDR_TRIG Registers

Offsets: 0x02c, 0x06c, ..., 0x2ac, 0x2ec

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RO
This is a trigger register (0Oxc). Writing a nonzero value will

reload the channel counter and start the channel.

DMA: CHO_AL3_CTRL, CH1_AL3_CTRL, .., CH10_AL3_CTRL, CH11_AL3_CTRL
Registers

Offsets: 0x030, 0x070, ..., 0x2b0, 0x2f0

Bits Description Type Reset
31:0 Alias for channel N CTRL register RO
DMA: CHO_AL3_WRITE_ADDR, CH1_AL3_WRITE_ADDR, .

CH10_AL3_WRITE_ADDR, CH11_AL3_WRITE_ADDR Registers

Offsets: 0x034, 0x074, ..., 0x2b4, 0x2f4

2.5.DMA

116

RP2040 Datasheet

Table 134.
CHO_AL3_WRITE_ADD
R
CH1_AL3_WRITE_ADD
R ..,
CHT0_AL3_WRITE_AD
DR,
CHT1_AL3_WRITE_AD
DR Registers

Table 135.
CHO_AL3_TRANS_COU
NT,
CH1_AL3_TRANS_COU
NT, ..,
CHT0_AL3_TRANS_CO
UNT,
CH11_AL3_TRANS_CO
UNT Registers

Table 136.
CHO_AL3_READ_ADDR
_TRIG,
CH1_AL3_READ_ADDR
_TRIG, ..,
CHT0_AL3_READ_ADD
R_TRIG,
CH11_AL3_READ_ADD
R_TRIG Registers

Table 137.
CH1_CTRL_TRIG
Register

2.5.DMA

Bits Description Type Reset
31:0 Alias for channel N WRITE_ADDR register RO -
DMA: CHO_AL3_TRANS_COUNT, CH1_AL3_TRANS_COUNT, vy

CH10_AL3_TRANS_COUNT, CH11_AL3_TRANS_COUNT Registers

Offsets: 0x038, 0x078, ..., 0x2b8, 0x2f8

Bits Description Type Reset
31:0 Alias for channel N TRANS_COUNT register RO -
DMA: CHO_AL3_READ_ADDR_TRIG, CH1_AL3_READ_ADDR_TRIG, vy

CH10_AL3_READ_ADDR_TRIG, CH11_AL3_READ_ADDR_TRIG Registers

Offsets: 0x03c, 0x07c, .., 0x2bc, 0x2fc

Bits Description Type Reset
31:0 Alias for channel N READ_ADDR register RO -
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.
DMA: CH1_CTRL_TRIG Register
Offset: 0x04c
Description
DMA Channel 1 Control and Status
Bits Name Description Type Reset
31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.
30 READ_ERROR If 1, the channel received a read bus error. Write one to WC 0x0
clear.
READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)
29 WRITE_ERROR If 1, the channel received a write bus error. Write one to WC 0x0
clear.
WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)
28:25 Reserved. = = =
24 BUSY This flag goes high when the channel starts a new transfer | RO 0x0

sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

117

RP2040 Datasheet

Bits

Description

Type

Reset

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (1).

RW

0x1

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

2.5.DMA

118

RP2040 Datasheet

Bits Name Description Type Reset
5 INCR_WRITE If 1, the write address increments with each transfer. If 0, |RW 0x0
each write is directed to the same, initial address.
Generally this should be disabled for memory-to-peripheral
transfers.
4 INCR_READ If 1, the read address increments with each transfer. If 0, |RW 0x0
each read is directed to the same, initial address.
Generally this should be disabled for peripheral-to-memory
transfers.
3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.
0x0 — SIZE_BYTE
0x1 — SIZE_HALFWORD
0x2 — SIZE_WORD
1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.
This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.
0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)
DMA: CH2_CTRL_TRIG Register
Offset: 0x08c
Description
DMA Channel 2 Control and Status
Table 135. Bits Name Description Type Reset
CH2_CTRL_TRIG
Register 31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.
30 READ_ERROR If 1, the channel received a read bus error. Write one to WwC 0x0

clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

2.5.DMA

119

RP2040 Datasheet
]

2.5.DMA

Bits

Description

Type

Reset

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (2).

RW

0x2

120

RP2040 Datasheet
]

Bits Name Description Type Reset
10 RING_SEL Select whether RING_SIZE applies to read or write RW 0x0
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For valuesn | RW 0x0
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

5 INCR_WRITE If 1, the write address increments with each transfer. If 0, | RW 0x0
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

4 INCR_READ If 1, the read address increments with each transfer. If 0, | RW 0x0
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

DMA: CH3_CTRL_TRIG Register

Offset: 0xOcc

2.5.DMA 121

RP2040 Datasheet
]

Description

Table 139.
CH3_CTRL_TRIG
Register

2.5.DMA

DMA Channel 3 Control and Status

Bits

Name

Description

Type

Reset

31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

122

RP2040 Datasheet

Bits

Description

Type

Reset

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (3).

RW

0x3

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

INCR_WRITE

If 1, the write address increments with each transfer. If 0,
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

RW

0x0

INCR_READ

If 1, the read address increments with each transfer. If 0,
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

RW

0x0

3:2

DATA_SIZE

Set the size of each bus transfer (byte/halfword/word).
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

RW

0x0

2.5.DMA

123

RP2040 Datasheet

Bits

Description

Type

Reset

HIGH_PRIORITY

HIGH_PRIORITY gives a channel preferential treatment in
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

RW

0x0

EN

DMA Channel Enable.

When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

RW

0x0

DMA: CH4_CTRL_TRIG Register

Offset: 0x10c

Description

DMA Channel 4 Control and Status

Table 140.
CH4_CTRL_TRIG

Bits

Name

Description

Type

Reset

Register 31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

wWC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

2.5.DMA

124

RP2040 Datasheet

Bits

Description

Type

Reset

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (4).

RW

0x4

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

2.5.DMA

125

RP2040 Datasheet

Bits Name Description Type Reset
5 INCR_WRITE If 1, the write address increments with each transfer. If 0, |RW 0x0
each write is directed to the same, initial address.
Generally this should be disabled for memory-to-peripheral
transfers.
4 INCR_READ If 1, the read address increments with each transfer. If 0, |RW 0x0
each read is directed to the same, initial address.
Generally this should be disabled for peripheral-to-memory
transfers.
3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.
0x0 — SIZE_BYTE
0x1 — SIZE_HALFWORD
0x2 — SIZE_WORD
1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.
This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.
0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)
DMA: CH5_CTRL_TRIG Register
Offset: Ox14c
Description
DMA Channel 5 Control and Status
Table 141. Bits Name Description Type Reset
CH5_CTRL_TRIG
Register 31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.
30 READ_ERROR If 1, the channel received a read bus error. Write one to WwC 0x0

clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

2.5.DMA

126

RP2040 Datasheet

Bits

Description

Type

Reset

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (5).

RW

0x5

2.5.DMA

127

RP2040 Datasheet
]

Bits Name Description Type Reset
10 RING_SEL Select whether RING_SIZE applies to read or write RW 0x0
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For valuesn | RW 0x0
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

5 INCR_WRITE If 1, the write address increments with each transfer. If 0, | RW 0x0
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

4 INCR_READ If 1, the read address increments with each transfer. If 0, | RW 0x0
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

DMA: CH6_CTRL_TRIG Register

Offset: 0x18¢c

2.5.DMA 128

RP2040 Datasheet
]

Description

Table 142.
CH6_CTRL_TRIG
Register

2.5.DMA

DMA Channel 6 Control and Status

Bits

Name

Description

Type

Reset

31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

129

RP2040 Datasheet
]

Bits Name Description Type Reset

20:15 TREQ_SEL Select a Transfer Request signal. RW 0x00
The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

14:11 CHAIN_TO When this channel completes, it will trigger the channel RW 0x6
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (6).

10 RING_SEL Select whether RING_SIZE applies to read or write RW 0x0
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For valuesn | RW 0x0
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

5 INCR_WRITE If 1, the write address increments with each transfer. If 0, | RW 0x0
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

4 INCR_READ If 1, the read address increments with each transfer. If 0, | RW 0x0
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

2.5.DMA 130

RP2040 Datasheet

Bits

Description

Type

Reset

HIGH_PRIORITY

HIGH_PRIORITY gives a channel preferential treatment in
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

RW

0x0

EN

DMA Channel Enable.

When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

RW

0x0

DMA: CH7_CTRL_TRIG Register

Offset: Ox1cc

Description

DMA Channel 7 Control and Status

Table 143.
CH7_CTRL_TRIG

Bits

Name

Description

Type

Reset

Register 31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

wWC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

2.5.DMA

131

RP2040 Datasheet

Bits

Description

Type

Reset

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (7).

RW

0x7

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

2.5.DMA

132

RP2040 Datasheet

Bits Name Description Type Reset
5 INCR_WRITE If 1, the write address increments with each transfer. If 0, |RW 0x0
each write is directed to the same, initial address.
Generally this should be disabled for memory-to-peripheral
transfers.
4 INCR_READ If 1, the read address increments with each transfer. If 0, |RW 0x0
each read is directed to the same, initial address.
Generally this should be disabled for peripheral-to-memory
transfers.
3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.
0x0 — SIZE_BYTE
0x1 — SIZE_HALFWORD
0x2 — SIZE_WORD
1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.
This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.
0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)
DMA: CH8_CTRL_TRIG Register
Offset: 0x20c
Description
DMA Channel 8 Control and Status
Table 144. Bits Name Description Type Reset
CH8_CTRL_TRIG
Register 31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.
30 READ_ERROR If 1, the channel received a read bus error. Write one to WwC 0x0

clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

2.5.DMA

133

RP2040 Datasheet

Bits

Description

Type

Reset

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (8).

RW

0x8

2.5.DMA

134

RP2040 Datasheet
]

Bits Name Description Type Reset
10 RING_SEL Select whether RING_SIZE applies to read or write RW 0x0
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For valuesn | RW 0x0
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

5 INCR_WRITE If 1, the write address increments with each transfer. If 0, | RW 0x0
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

4 INCR_READ If 1, the read address increments with each transfer. If 0, | RW 0x0
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

DMA: CH9_CTRL_TRIG Register

Offset: 0x24c

2.5.DMA 135

RP2040 Datasheet
]

Description

Table 145.
CH9_CTRL_TRIG
Register

2.5.DMA

DMA Channel 9 Control and Status

Bits

Name

Description

Type

Reset

31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

136

RP2040 Datasheet

Bits

Description

Type

Reset

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (9).

RW

0x9

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

INCR_WRITE

If 1, the write address increments with each transfer. If 0,
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

RW

0x0

INCR_READ

If 1, the read address increments with each transfer. If 0,
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

RW

0x0

3:2

DATA_SIZE

Set the size of each bus transfer (byte/halfword/word).
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

RW

0x0

2.5.DMA

137

RP2040 Datasheet

Bits

Description

Type

Reset

HIGH_PRIORITY

HIGH_PRIORITY gives a channel preferential treatment in
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

RW

0x0

EN

DMA Channel Enable.

When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

RW

0x0

DMA: CH10_CTRL_TRIG Register

Offset: 0x28c

Description

DMA Channel 10 Control and Status

Table 146.
CHT0_CTRL_TRIG

Bits

Name

Description

Type

Reset

Register 31

AHB_ERROR

Logical OR of the READ_ERROR and WRITE_ERROR flags.
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.

RO

0x0

30

READ_ERROR

If 1, the channel received a read bus error. Write one to
clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

wC

0x0

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

wWC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

2.5.DMA

138

RP2040 Datasheet
]

2.5.DMA

Bits

Description

Type

Reset

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (10).

RW

Oxa

10

RING_SEL

Select whether RING_SIZE applies to read or write
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

RW

0x0

9:6

RING_SIZE

Size of address wrap region. If 0, don't wrap. For values n
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

RW

0x0

139

RP2040 Datasheet

Bits Name Description Type Reset
5 INCR_WRITE If 1, the write address increments with each transfer. If 0, |RW 0x0
each write is directed to the same, initial address.
Generally this should be disabled for memory-to-peripheral
transfers.
4 INCR_READ If 1, the read address increments with each transfer. If 0, |RW 0x0
each read is directed to the same, initial address.
Generally this should be disabled for peripheral-to-memory
transfers.
3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.
0x0 — SIZE_BYTE
0x1 — SIZE_HALFWORD
0x2 — SIZE_WORD
1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.
This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.
0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)
DMA: CH11_CTRL_TRIG Register
Offset: Ox2cc
Description
DMA Channel 11 Control and Status
Table 147. Bits Name Description Type Reset
CH11_CTRL_TRIG
Register 31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags. |RO 0x0
The channel halts when it encounters any bus error, and
always raises its channel IRQ flag.
30 READ_ERROR If 1, the channel received a read bus error. Write one to WwC 0x0

clear.

READ_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 3 transfers later)

2.5.DMA

140

RP2040 Datasheet

Bits

Description

Type

Reset

29

WRITE_ERROR

If 1, the channel received a write bus error. Write one to
clear.

WRITE_ADDR shows the approximate address where the
bus error was encountered (will not to be earlier, or more
than 5 transfers later)

WC

0x0

28:25

Reserved.

24

BUSY

This flag goes high when the channel starts a new transfer
sequence, and low when the last transfer of that sequence
completes. Clearing EN while BUSY is high pauses the
channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),
see CHAN_ABORT.

RO

0x0

23

SNIFF_EN

If 1, this channel’s data transfers are visible to the sniff
hardware, and each transfer will advance the state of the
checksum. This only applies if the sniff hardware is
enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-
control- block basis.

RW

0x0

22

BSWAP

Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the
two bytes of each halfword are swapped. For word data,
the four bytes of each word are swapped to reverse order.

RW

0x0

21

IRQ_QUIET

In QUIET mode, the channel does not generate IRQs at the
end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a
control block chain.

This reduces the number of interrupts to be serviced by
the CPU when transferring a DMA chain of many small
control blocks.

RW

0x0

20:15

TREQ_SEL

Select a Transfer Request signal.

The channel uses the transfer request signal to pace its
data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the
system).

0x0 to 0x3a — select DREQ n as TREQ

0x3b — Select Timer 0 as TREQ

0x3c — Select Timer 1 as TREQ

0x3d — Select Timer 2 as TREQ (Optional)

0x3e — Select Timer 3 as TREQ (Optional)

0x3f — Permanent request, for unpaced transfers.

RW

0x00

1411

CHAIN_TO

When this channel completes, it will trigger the channel
indicated by CHAIN_TO. Disable by setting CHAIN_TO =
(this channel).

Reset value is equal to channel number (11).

RW

Oxb

2.5.DMA

141

RP2040 Datasheet
]

Bits Name Description Type Reset
10 RING_SEL Select whether RING_SIZE applies to read or write RW 0x0
addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)
boundary. If 1, write addresses are wrapped.

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For valuesn | RW 0x0
>0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating
access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This
can apply to either read or write addresses, based on
value of RING_SEL.

0x0 — RING_NONE

5 INCR_WRITE If 1, the write address increments with each transfer. If 0, | RW 0x0
each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral
transfers.

4 INCR_READ If 1, the read address increments with each transfer. If 0, | RW 0x0
each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory
transfers.

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount
(1/2/4 bytes) with each transfer.

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

1 HIGH_PRIORITY | HIGH_PRIORITY gives a channel preferential treatmentin | RW 0x0
issue scheduling: in each scheduling round, all high
priority channels are considered first, and then only a
single low priority channel, before returning to the high
priority channels.

This only affects the order in which the DMA schedules
channels. The DMA's bus priority is not changed. If the
DMA is not saturated then a low priority channel will see
no loss of throughput.

0 EN DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events,
which will cause it to become BUSY and start transferring
data. When 0, the channel will ignore triggers, stop issuing
transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

DMA: INTR Register

Offset: 0x400

2.5.DMA 142

RP2040 Datasheet

Description

Interrupt Status (raw)

Table 148. INTR

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:0 Raw interrupt status for DMA Channels 0..15. Bit n corresponds to channel n. | RO 0x0000
Ignores any masking or forcing. Channel interrupts can be cleared by writing a
bit mask to INTR, INTSO or INTST.

Channel interrupts can be routed to either of two system-level IRQs based on
INTEO and INTET.

This can be used vector different channel interrupts to different ISRs: this
might be done to allow NVIC IRQ preemption for more time-critical channels,

or to spread IRQ load across different cores.

It is also valid to ignore this behaviour and just use INTEQ/INTSO/IRQ 0.

DMA: INTEO Register
Offset: 0x404

Description

Interrupt Enables for IRQ 0

Table 149. INTEQ

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:.0 Set bit n to pass interrupts from channel n to DMA IRQ 0. RW 0x0000

DMA: INTFO Register
Offset: 0x408

Description

Force Interrupts

Table 150. INTFO

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTEQ. The interrupt remains RW 0x0000
asserted until INTFO is cleared.

DMA: INTSO Register
Offset: 0x40c

Description

Interrupt Status for IRQ 0

2.5.DMA 143

RP2040 Datasheet

Tab"e 151. INTS0 Bits Description Type Reset
Register
31:16 Reserved. = =
15:0 Indicates active channel interrupt requests which are currently causing IRQ0 | WC 0x0000
to be asserted.
Channel interrupts can be cleared by writing a bit mask here.
DMA: INTE1 Register
Offset: 0x414
Description
Interrupt Enables for IRQ 1
TabI‘e 152 INTET Bits Description Type Reset
Register
31:16 Reserved. - -
15:0 Set bit n to pass interrupts from channel n to DMA IRQ 1. RW 0x0000
DMA: INTF1 Register
Offset: 0x418
Description
Force Interrupts for IRQ 1
Tab"e 193. INTF1 Bits Description Type Reset
Register
31:16 Reserved. = =
15:0 Write 1s to force the corresponding bits in INTEQ. The interrupt remains RW 0x0000
asserted until INTFO is cleared.
DMA: INTS1 Register
Offset: 0x41c
Description
Interrupt Status (masked) for IRQ 1
Table 154. INTS1 Bits Description Type Reset
Register
31:16 Reserved. = =
15:0 Indicates active channel interrupt requests which are currently causing IRQ 1 | WC 0x0000
to be asserted.
Channel interrupts can be cleared by writing a bit mask here.

DMA: TIMERO, TIMER1, TIMER2, TIMER3 Registers
Offsets: 0x420, 0x424, 0x428, 0x42c

Description

Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by ((X/Y) * sys_clk). This equation is evaluated every
sys_clk cycles and therefore can only generate TREQs at a rate of 1 per sys_clk (i.e. permanent TREQ) or less.

2.5.DMA 144

RP2040 Datasheet
]

Table 155. TIMERG, Bits Name Description Type Reset
TIMERT, TIMERZ,
TIMERS Registers 31116 | X Pacing Timer Dividend. Specifies the X value for the (X/Y) |RW 0x0000
fractional timer.
15:0 Y Pacing Timer Divisor. Specifies the Y value for the (X/Y) RW 0x0000
fractional timer.
DMA: MULTI_CHAN_TRIGGER Register
Offset: 0x430
Description
Trigger one or more channels simultaneously
Table 156. Bits Description Type Reset
MULTL.CHAN_TRIGGE
R Register 31:16 | Reserved. - -
15:0 Each bit in this register corresponds to a DMA channel. Writing a 1 to the SC 0x0000
relevant bit is the same as writing to that channel’s trigger register; the
channel will start if it is currently enabled and not already busy.
DMA: SNIFF_CTRL Register
Offset: 0x434
Description
Sniffer Control
Table 157. . Bits Name Description Type Reset
SNIFF_CTRL Register
31:12 Reserved. = = =
11 OUT_INV If set, the result appears inverted (bitwise complement) RW 0x0
when read. This does not affect the way the checksum is
calculated; the result is transformed on-the-fly between
the result register and the bus.
10 OUT_REV If set, the result appears bit-reversed when read. This does | RW 0x0
not affect the way the checksum is calculated; the result
is transformed on-the-fly between the result register and
the bus.
9 BSWAP Locally perform a byte reverse on the sniffed data, before |RW 0x0
feeding into checksum.
Note that the sniff hardware is downstream of the DMA
channel byteswap performed in the read master: if
channel CTRL_BSWAP and SNIFF_CTRL_BSWAP are both
enabled, their effects cancel from the sniffer’s point of
view.

2.5.DMA

145

RP2040 Datasheet
]

Bits Name Description Type Reset

8:5 CALC 0x0 — Calculate a CRC-32 (IEEE802.3 polynomial) RW 0x0
0x1 — Calculate a CRC-32 (IEEE802.3 polynomial) with bit
reversed data

0x2 — Calculate a CRC-16-CCITT

0x3 — Calculate a CRC-16-CCITT with bit reversed data
Oxe — XOR reduction over all data. == 1 if the total 1
population count is odd.

0xf — Calculate a simple 32-bit checksum (addition with a
32 bit accumulator)

41 DMACH DMA channel for Sniffer to observe RW 0x0

0 EN Enable sniffer RW 0x0

DMA: SNIFF_DATA Register
Offset: 0x438

Description

Data accumulator for sniff hardware

Table 158.

) Bits Description Type Reset
SNIFF_DATA Register

31:0 Write an initial seed value here before starting a DMA transfer on the channel | RW 0x00000000
indicated by SNIFF_CTRL_DMACH. The hardware will update this register each
time it observes a read from the indicated channel. Once the channel
completes, the final result can be read from this register.

DMA: FIFO_LEVELS Register
Offset: 0x440

Description

Debug RAF, WAF, TDF levels

Table 159.

) Bits Name Description Type Reset
FIFO_LEVELS Register

31:24 Reserved. - - -

23:16 RAF_LVL Current Read-Address-FIFO fill level RO 0x00
15:8 WAF_LVL Current Write-Address-FIFO fill level RO 0x00
7:0 TDF_LVL Current Transfer-Data-FIFO fill level RO 0x00

DMA: CHAN_ABORT Register
Offset: 0x444

Description

Abort an in-progress transfer sequence on one or more channels

2.5.DMA 146

RP2040 Datasheet
]

Table 160.
CHAN_ABORT
Register

Table 161.
N_CHANNELS Register

Table 162.
CHO_DBG_CTDREQ,
CH1_DBG_CTDREQ, ..,
CH10_DBG_CTDREQ,
CH11_DBG_CTDREQ
Registers

Table 163.
CHO_DBG_TCR,
CH1_DBG_TCR, ..,
CH10_DBG_TCR,
CH11_DBG_TCR
Registers

Bits Description Type Reset
31:16 Reserved. = =
15:0 Each bit corresponds to a channel. Writing a 1 aborts whatever transfer SC 0x0000
sequence is in progress on that channel. The bit will remain high until any in-
flight transfers have been flushed through the address and data FIFOs.
After writing, this register must be polled until it returns all-zero. Until this
point, it is unsafe to restart the channel.
DMA: N_CHANNELS Register
Offset: 0x448
Bits Description Type Reset
BJIES Reserved. = =
4:0 The number of channels this DMA instance is equipped with. This DMA RO -
supports up to 16 hardware channels, but can be configured with as few as
one, to minimise silicon area.

DMA: CHO_DBG_CTDREQ, CH1_DBG_CTDREQ, CH10_DBG_CTDREQ,

CH11_DBG_CTDREQ Registers

Offsets: 0x800, 0x840, ..., 0xa80, OxacO0

Bits Description Type Reset
31:6 Reserved. = =
5:0 Read: get channel DREQ counter (i.e. how many accesses the DMA expects it | RO 0x00
can perform on the peripheral without overflow/underflow. Write any value:
clears the counter, and cause channel to re-initiate DREQ handshake.
DMA: CHO_DBG_TCR, CH1_DBG_TCR, .., CH10_DBG_TCR, CH11_DBG_TCR
Registers

Offsets: 0x804, 0x844, ..., 0xa84, Oxac4

Bits Description Type Reset

31:0 Read to get channel TRANS_COUNT reload value, i.e. the length of the next RO 0x00000000

transfer

2.6. Memory

RP2040 has embedded ROM and SRAM, and access to external Flash via a QSPI interface. Details of internal memory
are given below.

2.6.1. ROM

A 16kB read-only memory (ROM) is at address 0x00000000. The ROM contents are fixed at the time the silicon is
manufactured. It contains:

® |nitial startup routine

2.6. Memory

147

RP2040 Datasheet
]

Table 164. SRAM
bank0/1/2/3 striped
mapping.

® Flash boot sequence

® Flash programming routines

® USB mass storage device with UF2 support
e Utility libraries such as fast floating point

The boot sequence of the chip is defined in Section 2.8.1, and the ROM contents is described in more detail in Section
2.8. The full source code for the RP2040 bootrom is available at:

https://github.com/raspberrypi/pico-bootrom

The ROM offers single-cycle read-only bus access, and is on a dedicated AHB-Lite arbiter, so it can be accessed
simultaneously with other memory devices. Attempting to write to the ROM has no effect (no bus fault is generated).

2.6.2. SRAM

There is a total of 264kB of on-chip SRAM. Physically this is partitioned into six banks, as this vastly improves memory
bandwidth for multiple masters, but software may treat it as a single 264kB memory region. There are no restrictions on
what is stored in each bank: processor code, data buffers, or a mixture. There are four 16k x 32-bit banks (64kB each)
and two Tk x 32-bit banks (4kB each).

© IMPORTANT

Banking is a physical partitioning of SRAM which improves performance by allowing multiple simultaneous
accesses. Logically there is a single 264kB contiguous memory.

Each SRAM bank is accessed via a dedicated AHB-Lite arbiter. This means different bus masters can access different
SRAM banks in parallel, so up to four 32-bit SRAM accesses can take place every system clock cycle (one per master).

SRAM is mapped to system addresses starting at 0x20000000. The first 256kB address region is word-striped across the
four larger banks, which provides a significant memory parallelism benefits for most use cases.

Consecutive words in the system address space are routed to different RAM banks as shown in Table 164.

System address SRAM Bank SRAM word address
0x20000000 Bank 0 0
0x20000004 Bank 1 0
0x20000008 Bank 2 0
0x2000000c Bank 3 0
0x20000010 Bank 0 1
0x20000014 Bank 1 1
0x20000018 Bank 2 1
0x2000007c Bank 3 1
0x20000020 Bank 0 2
0x20000024 Bank 1 2
0x20000028 Bank 2 2
0x2000002c Bank 3 2
etc

The next two 4kB regions (starting at 0x20040000 and 0x20041000) are mapped directly to the smaller, 4kB memory banks.
Software may choose to use these for per-core purposes, e.g. stack and frequently-executed code, guaranteeing that

2.6. Memory

148

https://github.com/raspberrypi/pico-bootrom

RP2040 Datasheet

the processors never stall on these accesses. However, like all SRAM on RP2040, these banks have single-cycle access
from all masters providing no other masters are accessing the bank in the same cycle, so it is reasonable to treat
memory as a single 264kB device.

The four 64kB banks are also available at a non-striped mirror. The four 64kB regions starting at 0x21000000, 0x21010000,
0x21020000, 0x21030000 are each mapped directly to one of the four 64kB SRAM banks. Software can explicitly allocate
data and code across the physical memory banks, for improved memory performance in exceptionally demanding
cases. This is often unnecessary, as memory striping usually provides sufficient parallelism with less software
complexity.

The non-striped mirror starts at an offset of +16MB above the base of SRAM, as this is the maximum offset that allows
ARMv6M subroutine calls between the smaller banks and the non-striped larger banks.

2.6.2.1. Other On-chip Memory

Besides the 264kB main memory, there are two other dedicated RAM blocks that may be used in some circumstances:
e |f flash XIP caching is disabled, the cache becomes available as a 16kB memory starting at 0x15000000
* |f the USB is not used, the USB data DPRAM can be used as a 4kB memory starting at 0x50100000

This gives a total of 284kB of on-chip SRAM. There are no restrictions on how these memories are used, e.g. it is
possible to execute code from the USB data RAM if you choose.

2.6.3. Flash

External Flash is accessed via the QSPI interface using the execute-in-place (XIP) hardware. This allows an external
flash memory to be addressed and accessed by the system as though it were internal memory. Bus reads to a 16MB
memory window starting at 0x10000000 are translated into a serial flash transfer, and the result is returned to the master
that initiated the read. This process is transparent to the master, so a processor can execute code from the external
flash without first copying the code to internal memory, hence "execute in place". An internal cache remembers the
contents of recently-accessed flash locations, which accelerates the average bandwidth and latency of the interface.

Once correctly configured by RP2040’s bootrom and the flash second stage, the XIP hardware is largely transparent,
and software can treat flash as a large read-only memory. However, it does provide a number of additional features to
serve more demanding software use cases.

2.6. Memory 149

RP2040 Datasheet

Figure 14. Flash
execute-in-place (XIP)
subsystem. System
accesses via the main
AHB-Lite slave are
decoded to determine
if they are XIP
accesses, direct
accesses to the SS/
e.g. for configuration,
or accesses to various
other hardware and
control registers in the
XIP subsystem. XIP
accesses are first
looked up in the
cache, to accelerate
accesses to recently-
used data. If the data
is not found in the
cache, an external
serial access is
generated via the SSI,
and the resulting data
is stored in the cache
and forwarded on to
the system bus.

Aux AHBL Slave

MainAHBL Slave)
(streaming FIFO only)

!

Decode and Config

I

AHBL-APB Bridge .
for S| Configuration Read-only Cache Streaming FIFO

£ L)

Mux

Atomic RWType
Interposer
SSI
(Q)SPI
O NoTE

The serial flash interface is configured by the flash second stage when using the SDK to run at an integer divider of
the system clock. All the included second stage boot implementations support a PICO_FLASH_SPI_CLKDIV setting (e.g.
defaulted to 4 in https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/boot_stage2/
boot2_w25q080.S to make the default interface speed 125/4 = 31.25 MHz). This divider can be overridden by
specifying PICO_FLASH_SPI_CLKDIV in the particular board config header used with the SDK.

2.6.3.1. XIP Cache

The cache is 16 kB, two way set-associative, 1 cycle hit. It is internal to the XIP subsystem, and only affects accesses to
XIP flash, so software does not have to consider cache coherence, unless performing flash programming operations. It
caches reads from a 24-bit flash address space, which is mirrored multiple times in the RP2040 address space, each
alias having different caching behaviour. The eight MSBs of the system address are used for segment decode, leaving
24 bits for flash addressing, so the maximum supported flash size (for XIP operation) is 16MB. The available mirrors
are:

® 0x10--- XIP access, cacheable, allocating - Normal cache operation

® 9x11--- XIP access, cacheable, non-allocating - Check for hit, don’t update cache on miss
® 9x12--- XIP access, non-cacheable, allocating - Don’t check for hit, always update cache
® 9x13--- XIP access, non-cacheable, non-allocating - Bypass cache completely

® 9x15--- Use XIP cache as SRAM bank, mirrored across entire segment

If the cache is disabled, via the CTRL.EN register bit, then all four of the XIP aliases (0x10 to 0x13) will bypass the cache,
and access the flash directly. This has a significant impact on XIP code execution performance.

Access to the 0x15-- segment produces a bus error unless the cache is disabled by clearing CTRL.EN. Once the cache is
disabled, this region behaves as an additional 16 kB SRAM bank. Reads and writes are one cycle, but there is a wait
state on consecutive write-read sequences, i.e. there is no write forwarding buffer.

2.6. Memory

150

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/boot_stage2/boot2_w25q080.S
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/boot_stage2/boot2_w25q080.S

RP2040 Datasheet
]

2.6.3.2. Cache Flushing and Maintenance

The FLUSH register allows the entire cache contents to be flushed. This is necessary if software has reprogrammed the
flash contents, and needs to clear out stale data and code, without performing a reboot. Cache flushes are triggered
either manually by writing 1 to FLUSH, or automatically when the XIP block is brought out of reset. The flush is
implemented by zeroing the cache tag memory using an internal counter, which takes just over 1024 clock cycles (16 kB
total size / 8 bytes per line / 2 ways per set).

Flushing the cache whilst accessing flash data (perhaps initiating the flush on one core whilst another core may be
executing code from flash) is a safe operation, but any master accessing flash data while the flush is in progress will be
stalled until completion.

A CAUTION

The cache-as-SRAM alias (0x15-:-) must not be written whilst a cache flush is in progress. Before writing for the first
time, if a cache flush has recently been initiated (e.g. via a watchdog reset), a dummy read from FLUSH is
recommended to ensure the cache flush has completed. Writing to cache-as-SRAM whilst a flush is in progress can
corrupt the data memory contents.

A complete cache flush dramatically slows subsequent code execution, until the cache "warms up" again. There is an
alternative, which allows cache contents corresponding to only a certain address range to be invalidated. A write to the
0x10--- mirror will look up the addressed location in the cache, and delete any matching entry found. Writing to all word-
aligned locations in an address range (e.g. a flash sector that has just been erased and reprogrammed) therefore
eliminates the possibility of stale cached data in this range, without suffering the effects of a complete cache flush.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/flash/cache_perfctr/flash_cache_perfctr.c Lines 30 - 55

30 // Flush cache to make sure we miss the first time we access test_data
31 xip_ctrl_hw->flush = 1;

32 while (!(xip_ctrl_hw->stat & XIP_STAT_FLUSH_READY_BITS))

33 tight_loop_contents();

34

35 // Clear counters (write any value to clear)

36 xip_ctrl_hw->ctr_acc = 1;

37 xip_ctrl_hw->ctr_hit = 1;

38

39 (void) *test_data_ptr;

40 check(xip_ctrl_hw->ctr_hit == @ && xip_ctrl_hw->ctr_acc == 1,
41 "First access to data should miss");

42

43 (void) *test_data_ptr;

44 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc == 2,
45 "Second access to data should hit");

46

47 // Write to invalidate individual cache lines (64 bits)

48 // Writes must be directed to the cacheable, allocatable alias (address 6x10.._....)
49 *test_data_ptr = 0;

50 (void) *test_data_ptr;

51 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc == 3,
52 "Should miss after invalidation");

58 (void) *test_data_ptr;

54 check(xip_ctrl_hw->ctr_hit == 2 && xip_ctrl_hw->ctr_acc == 4,
55 "Second access after invalidation should hit again");

2.6.3.3. SSI

The execute-in-place functionality is provided by the SSI interface, documented in Section 4.10. It supports 1, 2 or 4-bit
SPI flash interfaces (SPI, DSPI and QSPI), and can insert either an instruction prefix or mode continuation bits on each

2.6. Memory

151

https://github.com/raspberrypi/pico-examples/tree/master/flash/cache_perfctr/flash_cache_perfctr.c#L30-L55

RP2040 Datasheet
]

XIP access. This includes the possibility of issuing a standard 03h serial flash read command for each access, allowing
virtually any serial flash device to be used. The maximum SPI clock frequency is half the system clock frequency.

The SSI can also be used as a standard FIFO-based SPI master, with DMA support. This mode is used by the bootrom to
extract the second stage bootloader from external flash (see Section 2.8.1). The bus interposer allows an atomic set,
clear or XOR operation to be posted to SSI control registers, in the same manner as other memory-mapped 10 on
RP2040. This is described in more detail in Section 2.1.2.

2.6.3.4. Flash Streaming and Auxiliary Bus Slave

As the flash is generally much larger than SRAM, it's often useful to stream chunks of data into memory from flash. It's
convenient to have the DMA stream this data in the background while software in the foreground is doing other things,
and it's even more convenient if code can continue to execute from flash whilst this takes place.

This doesn't interact well with standard XIP operation, because of the lengthy bus stalls forced on the DMA whilst the
SSI is performing serial transfers. These stalls are tolerable for a processor, because an in-order processor tends to
have nothing better to do while waiting for an instruction fetch to retire, and because typical code execution tends to
have much higher cache hit rates than bulk streaming of infrequently accessed data. In contrast, stalling the DMA
prevents any other active DMA channels from making progress during this time, which slows overall DMA throughput.

The STREAM_ADDR and STREAM_CTR registers are used to program a linear sequence of flash reads, which the XIP subsystem
will perform in the background in a best-effort fashion. To minimise impact on code being executed from flash whilst
the stream is ongoing, the streaming hardware has lower priority access to the SSI than regular XIP accesses, and there
is a brief cooldown (seven cycles) between the last XIP cache miss and resuming streaming. This helps to avoid
increase in initial access latency on XIP cache miss.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/flash/xip_stream/flash_xip_stream.c Lines 45 - 48

45 while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))

46 (void) xip_ctrl_hw->stream_fifo;

47 xip_ctrl_hw->stream_addr = (uint32_t) &random_test_data[@];
48 xip_ctrl_hw->stream_ctr = count_of(random_test_data);

The streamed data is pushed to a small FIFO, which generates DREQ signals, telling the DMA to collect the streamed
data. As the DMA does not initiate a read until after the data has been read from flash, the DMA is not stalled when
accessing the data.

Although this scheme ensures that the data is ready in the streaming FIFO once the DREQ is asserted, the DMA can still
be stalled if another master is currently stalled on the XIP slave, e.g. due to a cache miss. This is solved by the auxiliary
bus slave, which is a simple bus interface providing access only to the streaming FIFO. This slave is exposed on the
FASTPERI arbiter, which services only native AHB-Lite peripherals which don’t generate wait states, so the DMA will never
experience stalls when accessing the FIFO at this address, assuming it has high bus priority.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/flash/xip_stream/flash_xip_stream.c Lines 58 - 70

58 const uint dma_chan = @;

59 dma_channel_config cfg = dma_channel_get_default_config(dma_chan);
60 channel_config_set_read_increment(&cfg, false);

61 channel_config_set_write_increment(&cfg, true);

62 channel_config_set_dreq(&cfg, DREQ_XIP_STREAM);

63 dma_channel_configure(

64 dma_chan,

65 &cfg,

66 (void *) buf, // Write addr

67 (const void *) XIP_AUX_BASE, // Read addr

68 count_of(random_test_data), // Transfer count

69 true // Start immediately!
70)5

2.6. Memory

152

https://github.com/raspberrypi/pico-examples/tree/master/flash/xip_stream/flash_xip_stream.c#L45-L48
https://github.com/raspberrypi/pico-examples/tree/master/flash/xip_stream/flash_xip_stream.c#L58-L70

RP2040 Datasheet
]

Table 165. List of XIP
registers

Table 166. CTRL
Register

2.6.3.5. Performance Counters

The XIP subsystem provides two performance counters. These are 32 bits in size, saturate upon reaching oxffffffff,
and are cleared by writing any value. They count:

1. The total number of XIP accesses, to any alias

2. The number of XIP accesses which resulted in a cache hit

For common use cases, this allows the cache hit rate to be profiled.

2.6.3.6. List of XIP Registers

The XIP registers start at a base address of 0x14000000 (defined as XIP_CTRL_BASE in SDK).

Offset Name Info
0x00 CTRL Cache control
0x04 FLUSH Cache Flush control
0x08 STAT Cache Status
0x0c CTR_HIT Cache Hit counter
0x10 CTR_ACC Cache Access counter
0x14 STREAM_ADDR FIFO stream address
0x18 STREAM_CTR FIFO stream control
OxT1c STREAM_FIFO FIFO stream data
XIP: CTRL Register
Offset: 0x00
Description

Cache control

allocating)

will produce a bus fault. When 0, these writes are silently
ignored.

In either case, writes to the 0x0 alias will deallocate on tag
match,

as usual.

Bits Name Description Type Reset
31:4 Reserved. - - -
3 POWER_DOWN When 1, the cache memories are powered down. They RW 0x0
retain state,
but can not be accessed. This reduces static power
dissipation.
Writing 1 to this bit forces CTRL_EN to 0, i.e. the cache
cannot
be enabled when powered down.
Cache-as-SRAM accesses will produce a bus error
response when
the cache is powered down.
2 Reserved. = = =
1 ERR_BADWRITE | When 1, writes to any alias other than 0x0 (caching, RW 0x1

2.6. Memory

153

RP2040 Datasheet

Bits Name Description Type Reset
0 EN When 1, enable the cache. When the cache is disabled, all | RW 0x1
XIP accesses
will go straight to the flash, without querying the cache.
When enabled,
cacheable XIP accesses will query the cache, and the
flash will
not be accessed if the tag matches and the valid bit is set.
If the cache is enabled, cache-as-SRAM accesses have no
effect on the
cache data RAM, and will produce a bus error response.
XIP: FLUSH Register
Offset: 0x04
Description
Cache Flush control
Tab{e 167. FLUSH Bits Description Type Reset
Register
31:1 Reserved. = =
0 Write 1 to flush the cache. This clears the tag memory, but SC 0x0
the data memory retains its contents. (This means cache-as-SRAM
contents is not affected by flush or reset.)
Reading will hold the bus (stall the processor) until the flush
completes. Alternatively STAT can be polled until completion.
XIP: STAT Register
Offset: 0x08
Description
Cache Status
Tabl_e 168. STAT Bits Name Description Type Reset
Register
BilF8 Reserved. = = =
2 FIFO_FULL When 1, indicates the XIP streaming FIFO is completely RO 0x0
full.
The streaming FIFO is 2 entries deep, so the full and
empty
flag allow its level to be ascertained.
1 FIFO_EMPTY When 1, indicates the XIP streaming FIFO is completely RO 0x1
empty.
0 FLUSH_READY Reads as 0 while a cache flush is in progress, and 1 RO 0x0
otherwise.
The cache is flushed whenever the XIP block is reset, and
also
when requested via the FLUSH register.

XIP: CTR_HIT Register

Offset: 0x0c

2.6. Memory

154

RP2040 Datasheet
]

Table 169. CTR_HIT
Register

Table 170. CTR_ACC
Register

Table 171.
STREAM_ADDR
Register

Description

Cache Hit counter

Bits Description Type Reset
31:0 A 32 bit saturating counter that increments upon each cache hit, WC 0x00000000
i.e. when an XIP access is serviced directly from cached data.
Write any value to clear.
XIP: CTR_ACC Register
Offset: 0x10
Description
Cache Access counter
Bits Description Type Reset
31:0 A 32 bit saturating counter that increments upon each XIP access, WC 0x00000000
whether the cache is hit or not. This includes noncacheable accesses.
Write any value to clear.
XIP: STREAM_ADDR Register
Offset: 0x14
Description
FIFO stream address
Bits Description Type Reset
31:2 The address of the next word to be streamed from flash to the streaming RW 0x00000000
FIFO.
Increments automatically after each flash access.
Write the initial access address here before starting a streaming read.
1:0 Reserved. - -

XIP: STREAM_CTR Register

Offset: 0x18

Description

FIFO stream control

2.6. Memory

155

RP2040 Datasheet
]

Table 172.

) Bits Description Type Reset
STREAM_CTR Register

31:22 Reserved. - -

21:0 Write a nonzero value to start a streaming read. This will then RW 0x000000
progress in the background, using flash idle cycles to transfer
a linear data block from flash to the streaming FIFO.
Decrements automatically (1 at a time) as the stream
progresses, and halts on reaching 0.

Write 0 to halt an in-progress stream, and discard any in-flight
read, so that a new stream can immediately be started (after
draining the FIFO and reinitialising STREAM_ADDR)

XIP: STREAM_FIFO Register
Offset: Ox1c

Description

FIFO stream data

Table 173.
STREAM_FIFO

Register 31:0 Streamed data is buffered here, for retrieval by the system DMA. RF 0x00000000
This FIFO can also be accessed via the XIP_AUX slave, to avoid exposing
the DMA to bus stalls caused by other XIP traffic.

Bits Description Type Reset

2.7. Boot Sequence

Several components of the RP2040 work together to get to a point where the processors are out of reset and able to run
the bootrom (Section 2.8). The bootrom is software that is built into the chip, performing the "processor controlled" part
of the boot sequence. We will refer to the steps before the processor is running as the "hardware controlled" boot
sequence.

The hardware controlled boot sequence is as follows:
® Power is applied to the chip and the RUN pin is high. (If RUN is low then the chip will be held in reset.)
® The On-Chip Voltage Regulator (Section 2.10) waits until the digital core supply (DVDD) is stable
® The Power-On State Machine (Section 2.13) is started. To summarise the sequence:

o The Ring Oscillator (Section 2.17) is started, providing a clock source to the clock generators. clk_sys and
clk_ref are now running at a relatively low frequency (typically 6.5MHz).

o The reset controller (Section 2.14), the execute-in-place hardware (Section 2.6.3), memories (Section 2.6.2
and Section 2.6.1), Bus Fabric (Section 2.1), and Processor Subsystem (Section 2.3) are taken out of reset.

o Processor core 0 and core 1 begin to execute the bootrom (Section 2.8).

2.8. Bootrom

The Bootrom size is limited to 16 kB. It contains:
® Processor core 0 initial boot sequence.
® Processor core 1 low power wait and launch protocol.

® USB MSC class-compliant bootloader with UF2 support for downloading code/data to FLASH or RAM.

|
2.7. Boot Sequence 156

https://github.com/Microsoft/uf2

RP2040 Datasheet

® USB PICOBOOT bootloader interface for advanced management.
® Routines for programming and manipulating the external flash.

* Fast floating point library.

® Fast bit counting / manipulation functions.

® Fast memory fill / copy functions.

Bootrom Source Code

The full source for the RP2040 bootrom can be found at https://github.com/raspberrypi/pico-bootrom.

This includes both version 1 and version 2 of the bootrom, which correspond to the B0 and B1 silicon
revisions, respectively.

2.8.1. Processor Controlled Boot Sequence

A flow diagram of the boot sequence is given in Figure 15.

Figure 15. RP2040 ¥

Both cores enter
bootrom

Boot Sequence Configure SSI and

connect to pads

|

hich core am 17 T Sleep until glven Load 256 bytes
entry point from flash
0
Increment
IREREEES Y Clear flag and halt CPOL, CPHA and Y iy i
flag set? second stage
delay 100us
N
ity Set SPand
Jump .
boot-to-SRAM Y e N than 0.5 s since
set?
N v
v '
100us delay Start crystal
(pullup on flash CSn) oscillator
Read flash CSn High (flash boot) Crystal present? N
14
Low (USB device) +
Start PLLs. Sys,
Read CSn multiple times and USB clocked at 48
take majority vote, to mitigate MHz

noise due to weak pullup

Enter USB device
mode bootcode

After the hardware controlled boot sequence described in Section 2.7, the processor controlled boot sequence starts:
® Reset to both processors released: both enter ROM at same location

® Processors check SI0.CPUID

o Processor 1 goes to sleep (WFE with SCR.SLEEPDEEP enabled) and remains asleep until woken by user code,
via the mailbox

o Processor 0 continues executing from ROM

* |f power up event was from Rescue DP, clear this flag and halt immediately

2.8. Bootrom 157

https://github.com/raspberrypi/pico-bootrom

RP2040 Datasheet
]

o The debug host (which initiated the rescue) will provide further instruction.

If watchdog scratch registers set to indicate pre-loaded code exists in SRAM, jump to that code

Check if SPI CS pin is tied low ("bootrom button"), and skip flash boot if so.

® Set up 10 muxing, pad controls on QSPI pins, and initialise Synopsys SSI for standard SPI mode

Issue XIP exit sequence, in case flash is still in an XIP mode and has not been power-cycled

Copy 256 bytes from SPI to internal SRAM (SRAM5) and check for valid CRC32 checksum

If checksum passes, assume what we have loaded is a valid flash second stage

e Start executing the loaded code from SRAM (SRAM5)

If no valid image found in SPI after 0.5 seconds of attempting to boot, drop to USB device boot

USB device boot: appear as a USB Mass Storage Device

o Can program the SPI flash, or load directly into SRAM and run, by dragging and dropping an image in UF2
format.

o Also supports an extended PICOBOOT interface

2.8.1.1. Watchdog Boot

Watchdog boot allows users to install their own boot handler, and divert control away from the main boot sequence on
non-POR/BOR resets. It also simplifies running code over the JTAG test interface. It recognises the following values
written to the watchdog's upper scratch registers:

® Scratch 4: magic number 0xb007c0d3

e Scratch 5: Entry point XORed with magic -0xb0@7c0d3 (0x4f83f2d)
® Scratch 6: Stack pointer

® Scratch 7: Entry point

If either of the magic numbers mismatch, watchdog boot does not take place. If the numbers match, the Bootrom
zeroes scratch 4 before transferring control, so that the behaviour does not persist over subsequent reboots.

2.8.1.2. Flash Boot Sequence

One of the main challenges of a warm flash boot is forcing the external flash from XIP mode to a mode where it will
accept standard SPI commands. There is no standard method to discontinue XIP on an unknown flash. The Bootrom
provides a best-effort sequence with broad compatibility, which is as follows:

® CSn=1,10[3:0]=4'b0000 (via pull downs to avoid contention), issue x32 clocks
® (Sn=0, 10[3:0]=4'b1111 (via pull ups to avoid contention), issue x32 clocks

® (Sn=1

® (Sn=0, MOSI=1'b1 (driven low-Z, all other 10s Hi-Z), issue x16 clocks

This is designed to miss the XIP continuation codes on Cypress, Micron and Winbond parts. If the device is already in
SPI mode, it interprets this sequence as two FFh NOP instructions, which should be ignored.

As this is best effort only, there may be some devices which obstinately remain in XIP mode. There are then two
options:
® Use a less efficient XIP mode where each transfer has an SPI instruction prefix, so the flash device remains

communicative in SPI mode.

® Boot code installs a compatible XIP exit sequence in SRAM, and configures the watchdog such that a warm boot
will jump straight into this sequence, foregoing our canned sequence.

|
2.8. Bootrom 158

RP2040 Datasheet
]

After issuing the XIP exit sequence, the Bootrom attempts to read in the second stage from flash using standard 03h
serial read commands, which are near-universally supported. Since the Bootrom is immutable, it aims for compatibility
rather than performance.

2.8.1.3. Flash Second Stage

The flash second stage must configure the SSI and the external flash for the best possible execute-in-place
performance. This includes interface width, SCK frequency, SPI instruction prefix and an XIP continuation code for
address-data only modes. Generally some operation can be performed on the external flash so that it does not require
an instruction prefix on each access, and will simply respond to addresses with data.

Until the SSI is correctly configured for the attached flash device, it is not possible to access flash via the XIP address
window. Additionally, the Synopsys SSI can not be reconfigured at all without first disabling it. Therefore the second
stage must be copied from flash to SRAM by the bootrom, and executed in SRAM.

Alternatively, the second stage can simply shadow an image from external flash into SRAM, and not configure execute-
in-place.

This is the only job of the second stage. All other chip setup (e.g. PLLs, Voltage Regulator) can be performed by
platform initialisation code executed over the XIP interface, once the second stage has run.

2.8.1.3.1. Checksum

The last four bytes of the image loaded from flash (which we hope is a valid flash second stage) are a CRC32 checksum
of the first 252 bytes. The parameters of the checksum are:

® Polynomial: 0x04c11db7

® |nput reflection: no

® Qutput reflection: no

® Initial value: Oxffffffff

® Final XOR: 0x00000000

® Checksum value appears as little-endian integer at end of image

The Bootrom makes 128 attempts of approximately 4ms each for a total of approximately 0.5 seconds before giving up
and dropping into USB code to load and checksum the second stage with varying SPI parameters. If it sees a checksum
pass it will immediately jump into the 252-byte payload which contains the flash second stage.

2.8.2. Bootrom Contents

Some of the bootrom is dedicated to the implementation of the boot sequence and USB boot interfaces. There is also
code in the bootrom useful to user programs. Table 174 shows the fixed memory layout of the first handful of words in
the Bootrom which are instrumental in locating other content within the bootrom.

Table 174. Bootrom

contents at fixed (wel Address Contents Description
known) adresses 0x00000000 32-bit pointer Initial boot stack pointer
0x00000004 32-bit pointer Pointer to boot reset handler function
0x00000008 32-bit pointer Pointer to boot NMI handler function
0x0000000c 32-bit pointer Pointer to boot Hard fault handler function
0x00000010 ‘M, "u', 0x01 Magic
0x00000013 byte Bootrom version
0x00000014 16-bit pointer Pointer to a public function lookup table (rom_func_table)

|
2.8. Bootrom 159

RP2040 Datasheet
]

0x00000016 16-bit pointer Pointer to a public data lookup table (rom_data_table)

0x00000018 16-bit pointer Pointer to a helper function (rom_table_lookup())

2.8.2.1. Bootrom Functions

The Bootrom contains a number of public functions that provide useful RP2040 functionality that might be needed in
the absence of any other code on the device, as well as highly optimized versions of certain key functionality that would
otherwise have to take up space in most user binaries.

These functions are normally made available to the user by the SDK, however a lower level method is provided to locate
them (their locations may change with each Bootrom release) and call them directly.

Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x01) then the three halfwords starting at offset
0x00000014 are valid.

These three values can be used to dynamically locate other functions or data within the Bootrom. The version byte at
offset 9x00000013 is informational and should not be used to infer the exact location of any functions.

The following code from the SDK shows how the three 16-bit pointers are used to lookup other functions or data.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_bootrom/bootrom.c Lines 10 - 28

10 // Bootrom function: rom_table_lookup

11 // Returns the 32 bit pointer into the ROM if found or NULL otherwise.

12 typedef void *(*rom_table_lookup_fn)(uint16_t *table, uint32_t code);

13

14 // Convert a 16 bit pointer stored at the given rom address into a 32 bit pointer
15 #define rom_hword_as_ptr(rom_address) (void *)(uintptr_t)(*(uint16_t *)rom_address)

16

17 void *rom_func_lookup(uint32_t code) {

18 rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
19 uint16_t *func_table = (uintl16_t *) rom_hword_as_ptr(©x14);

20 return rom_table_lookup(func_table, code);

21 }

22

23 void *rom_data_lookup(uint32_t code) {

24 rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
25 uint16_t *data_table = (uint16_t *) rom_hword_as_ptr(0x16);

26 return rom_table_lookup(data_table, code);

27 }

The code parameter correspond to the CODE values in the tables below, and is calculated as follows:

uint32_t rom_table_code(char c1, char c2) {
return (c2 << 8) | c1;

2.8.2.1.1. Fast Bit Counting / Manipulation Functions

These are optimized versions of common bit counting / manipulation functions.

In general you do not need to call these methods directly as the SDK pico_bit_ops library replaces the corresponding
standard compiler library functions by default so that the standard functions such as __builtin_popcount or __c1zdi2 uses
the corresponding Bootrom implementations automatically (see pico_bit_ops for more details).

These functions have changed in speed slightly between version 1 (V1) of the bootrom and version 2 (V2)

|
2.8. Bootrom 160

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_bootrom/bootrom.c#L10-L28
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf#group_pico_bit_ops

RP2040 Datasheet
]

Zablet.ﬁs) FastBit CODE Cycles Avg | Cycles Avg | Description
ounting
Manipulation i v2
Functions.
unctions P13 18 20 wint32_t _popcount32(uint32_t value)
Return a count of the number of 1 bits in value.
'R','3" 21 22 uint32_t _reverse32(uint32_t value)
Return the bits of value in the reverse order.
L, 3t 13 9.6 uint32_t _c1z32(uint32_t value)
Return the number of consecutive high order @ bits of value. If value is zero, returns
32.
T, '3 12 1 uint32_t _ctz32(uint32_t value)
Return the number of consecutive low order 0 bits of value. If value is zero, returns
32.
2.8.2.1.2. Fast Bulk Memory Fill / Copy Functions

These are highly optimized bulk memory fill and copy functions commonly provided by most language runtimes.

In general you do not need to call these methods directly as the SDK pico_mem_ops library replaces the corresponding
standard ARM EABI functions by default so that the standard C library functions e.g. memcpy or memset use the Bootrom
implementations automatically (see pico_mem_ops for more details).

Table 176. Optimized
Bulk Memory Fill /
Copy Functions

CODE Description

'M','s’ uint8_t *_memset(uint8_t *ptr, uint8_t c, uint32_t n)

Sets n bytes start at ptr to the value ¢ and returns ptr.

'M','4' uint32_t *_memset4(uint32_t *ptr, uint8_t c, uint32_t n)

Sets n bytes start at ptr to the value ¢ and returns ptr. Note this is a slightly more efficient variant of
_memset that may only be used if ptr is word aligned.

M, e’ uint8_t *_memcpy(uint8_t *dest, uint8_t *src, uint32_t n)

Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.

¢, 4 uint8_t *_memcpy44(uint32_t *dest, uint32_t *src, uint32_t n)

Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.
Note this is a slightly more efficient variant of _memcpy that may only be used if dest and src are word
aligned.

2.8.2.1.3. Flash Access Functions

These are low level flash helper functions.

Table 177. Flash
Access Functions

CODE Description

'T','F' void _connect_internal_flash(void)

Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads

|
2.8. Bootrom 161

https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf#group_pico_mem_ops

RP2040 Datasheet

void _flash_exit_xip(void)

First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence described in
Section 2.8.1.2. Note that the bootrom code uses the 10 forcing logic to drive the CS pin, which must be
cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This function
configures the SSI with a fixed SCK clock divisor of /6.

void _flash_range_erase(uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)

Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command
e.g. D8h block erase, and the size of the block erased by this command — this function will use the larger
block erase where possible, for much higher erase speed. addr must be aligned to a 4096-byte sector, and
count must be a multiple of 4096 bytes.

void flash_range_program(uint32_t addr, const uint8_t *data, size_t count)

Program data to a range of flash addresses starting at addr (offset from the start of flash) and count bytes
in size. addr must be aligned to a 256-byte boundary, and count must be a multiple of 256.

void _flash_flush_cache(void)

Flush and enable the XIP cache. Also clears the |0 forcing on QSPI CSn, so that the SSI can drive the
flash chip select as normal.

ELX
"R',E
"R', P
Frc
e

void _flash_enter_cmd_xip(void)

Configure the SSI to generate a standard 03h serial read command, with 24 address bits, upon each XIP
access. This is a very slow XIP configuration, but is very widely supported. The debugger calls this
function after performing a flash erase/programming operation, so that the freshly-programmed code
and data is visible to the debug host, without having to know exactly what kind of flash device is
connected.

A typical call sequence for erasing a flash sector from user code would be:

® _connect_internal_flash

o _flash_exit_xip

e _flash_range_erase(addr, 1 << 12,1 << 16, 0xd8)

® _flash_flush_cache

® Either a call to _flash_enter_cmd_xip or call into a flash second stage that was previously copied out into SRAM

Note that, in between the first and last calls in this sequence, the SSl is not in a state where it can handle XIP accesses,
so the code that calls the intervening functions must be located in SRAM. The SDK hardware_flash library hides these

details.

2.8.2.1.4. Debugging Support Functions

These two methods simplify the task of calling code on the device and then returning control to the debugger.

Table 178. Debugging
Support Functions

CODE

Description

T

_debug_trampoline

Simple debugger trampoline for break-on-return.

This methods helps the debugger call ROM routines without setting hardware breakpoints. The function
address is passed in r7 and args are passed through r0 ... r3 as per ABI.

This method does not return but executes a BKPT #0 at the end.

2.8. Bootrom

162

RP2040 Datasheet
]

Table 179.
Miscellaneous
Functions

'D','E" _debug_trampoline_end

This is the address of the final BKPT #0 instruction of debug_trampoline. This can be compared with the
program counter to detect completion of the debug_trampoline call.

2.8.2.1.5. Miscellaneous Functions

These remaining functions don't fit in other categories and are exposed in the SDK via the pico_bootrom library (see
pico_bootrom).

CODE Description

'u','B' void _reset_to_usb_boot(uint32_t gpio_activity_pin_mask, uint32_t disable_interface_mask)

Resets the RP2040 and uses the watchdog f